1
|
Selected Applications of Terahertz Pulses in Medicine and Industry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article contains a brief summary of areas where terahertz technology is making an impact in research and industrial applications. We cover some of its uses in the pharmaceutical setting, where both imaging and spectroscopy play important roles. Medical applications are also being pursued in many research laboratories, primarily for imaging purposes and following on from the first results just over 20 years ago. The three-dimensional imaging capability of pulsed terahertz allows for the observation of tumours below the surface of tissue, such as basal cell carcinoma of skin. The recent use of the technology in studies of cultural heritage has shown to increase our understanding of the past. The power of terahertz is exemplified by the discussion on its importance in different industries, such as semiconductor circuit manufacturing and automotive assembly.
Collapse
|
2
|
Hu C, Lu YL, Li YZ, Yang YP, Liu M, Liu JM, Li YY, Jin QH, Niu YY. Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: Syntheses, structures, photocatalysis and THz spectra. ENVIRONMENTAL RESEARCH 2022; 206:112267. [PMID: 34756915 DOI: 10.1016/j.envres.2021.112267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Water pollution, which continuously threatens human health and the sustainable development of society, has become a major concern. Photocatalytic degradation is an effective strategy to remove organic dyes from wastewater. For this strategy, it is crucial to select the appropriate catalyst. Using triphenylphosphine oxide (OPPh3) as the ligand, phosphomolybdic acid as the anion template, three new lanthanide complexes [Ln(OPPh3)4(H2O)3](PMo12O40)∙4C2H5OH (1-3) (Ln = Sm, Gd, Tb) were synthesized. The raw materials for the reaction are cheap and readily available. The convenient synthesis method is environmentally friendly, with high yield (70%-80%). Complexes 1-3 are all seven-coordinated mononuclear structures centered on lanthanide ions, [PMo12O40]3- anions and solvent molecules are not coordinated with metal ions. These mononuclear structures eventually form complicated 3D supramolecular structures through hydrogen bonds, Mo-O … π or C-H … π weak interactions. Complexes 1-3 photocatalytic degradation of MB have high removal rates, as catalysts have enough stability to be reused, and can be used as excellent catalysts for the degradation of dye molecules in sewage. Among them, the removal rate of MB by photodegradation of complex 2 was highest (99.50%). In addition, the effects of different initial concentrations of MB solution and different types of organic dyes on the photocatalysis experiment were investigated. The photocatalytic reaction mechanism of complexes 1-3 was also studied. Due to the similar structures of complexes 1-3, they have almost the same THz absorption spectra with different absorption intensity, which may be attributed to the difference of the number of weak interactions. Therefore, terahertz spectroscopy can be used as a sensitive method to distinguish and determine small differences between lanthanide-organic complexes. This is the first time that this spectrum has been used to characterize lanthanide phosphine oxide complexes modified by [PMo12O40]3-.
Collapse
Affiliation(s)
- Cong Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yan-Lei Lu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Min Liu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Ming Liu
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China.
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
3
|
Wang ZQ, Sun LZ, Kuang XN, Lu YL, Li YY, Yang YP, Liu JM, Niu YY, Jin QH. Intermolecular interactions, photocatalysis and THz-TDS interrelationships for lanthanide phosphine oxide complexes based on {PW 12}. ENVIRONMENTAL RESEARCH 2022; 203:111873. [PMID: 34411548 DOI: 10.1016/j.envres.2021.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A series of rare earth complexes containing (α-PW12O40)3- and PO ligand are synthesized by water bath in 70 °C, [Ln(OPPh3)4(H2O)3](PW12O40)·4CH3CN (Ln = La, Pr, Nd, Sm, Gd, Tb, Ho 1-7) (OPPh3 = Triphenylphosphine oxide, {PW12} = phosphotungstic acid). The precise structures are confirmed by X-ray single crystal diffraction and the result shows all complexes are isostructural. Complexes 1-7 are fully characterized by PXRD, FT-IR, TGA, UV diffuse reflectance spectra and terahertz time-domain spectroscopy (THz-TDS). Complex 3 exhibits the highest photocatalytic degradation efficiency for methylene blue (MB) in this series of complexes. The experimental results showed that the photodegradation efficiency can remain constant at the level of 95% after five consecutive cycles. The photocatalytic reaction kinetics and mechanism of complexes were investigated. Additionally, complexes also exhibit photocatalytic hydrogen evolution activity. THz-TDS was used to characterize the complexes and its raw materials, the characteristic peaks of OPPh3 (broad peak at 1.20 THz) and phosphotungstic acid (sharp peaks at 0.23, 0.32 THz) were obtained.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ling-Zhi Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xiao-Nan Kuang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yan-Lei Lu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Jian-Ming Liu
- School of Mathematical Science, Peking University, Beijing, 100871, China
| | - Yun-Yin Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
4
|
Banks PA, Burgess L, Ruggiero MT. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Phys Chem Chem Phys 2021; 23:20038-20051. [PMID: 34518858 DOI: 10.1039/d1cp02496e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terahertz vibrational spectroscopy has emerged as a powerful spectroscopic technique, providing valuable information regarding long-range interactions - and associated collective dynamics - occurring in solids. However, the terahertz sciences are relatively nascent, and there have been significant advances over the last several decades that have profoundly influenced the interpretation and assignment of experimental terahertz spectra. Specifically, because there do not exist any functional group or material-specific terahertz transitions, it is not possible to interpret experimental spectra without additional analysis, specifically, computational simulations. Over the years simulations utilizing periodic boundary conditions have proven to be most successful for reproducing experimental terahertz dynamics, due to the ability of the calculations to accurately take long-range forces into account. On the other hand, there are numerous reports in the literature that utilize gas phase cluster geometries, to varying levels of apparent success. This perspective will provide a concise introduction into the terahertz sciences, specifically terahertz spectroscopy, followed by an evaluation of gas phase and periodic simulations for the assignment of crystalline terahertz spectra, highlighting potential pitfalls and good practice for future endeavors.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| | - Luke Burgess
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| | - Michael T Ruggiero
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| |
Collapse
|
5
|
|
6
|
Sherman AM, Takanti N, Rong J, Simpson GJ. Nonlinear optical characterization of pharmaceutical formulations. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Upadhya R, Punia A, Kanagala MJ, Liu L, Lamm M, Rhodes TA, Gormley AJ. Automated PET-RAFT Polymerization Towards Pharmaceutical Amorphous Solid Dispersion Development. ACS APPLIED POLYMER MATERIALS 2021; 3:1525-1536. [PMID: 34368765 PMCID: PMC8336633 DOI: 10.1021/acsapm.0c01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In pharmaceutical oral drug delivery development, about 90% of drugs in the pipeline have poor aqueous solubility leading to severe challenges with oral bioavailability and translation to effective and safe drug products. Amorphous solid dispersions (ASDs) have been utilized to enhance the oral bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, a limited selection of regulatory-approved polymer excipients exists for the development and further understanding of tailor-made ASDs. Thus, a significant need exists to better understand how polymers can be designed to interact with specific API moieties. Here, we demonstrate how an automated combinatorial library approach can be applied to the synthesis and screening of polymer excipients for the model drug probucol. We synthesized a library of 25 random heteropolymers containing one hydrophilic monomer (2-hydroxypropyl acrylate (HPA)) and four hydrophobic monomers at varied incorporation. The performance of ASDs made by a rapid film casting method was evaluated by dissolution using ultra-performance liquid chromatography (UPLC) sampling at various time points. This combinatorial library and rapid screening strategy enabled us to identify a relationship between polymer hydrophobicity, monomer hydrophobic side group geometry, and API dissolution performance. Remarkably, the most effective synthesized polymers displayed slower drug release kinetics compared to industry standard polymer excipients, showing the ability to modulate the drug release profile. Future coupling of high throughput polymer synthesis, high throughput screening (HTS), and quantitative modeling would enable specification of designer polymer excipients for specific API functionalities.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashish Punia
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mythili J. Kanagala
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lina Liu
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew Lamm
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy A. Rhodes
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Ouyang J, Chen J, Chen W, Rosbottom I, Guo M, Heng JYY. Application of Phenyl-Functionalized Porous Silica for the Selective Crystallization of Carbamazepine Metastable Form II. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinbo Ouyang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, P. R. China
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jian Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Ian Rosbottom
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Mingxia Guo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
9
|
Minecka A, Hachuła B, Jurkiewicz K, Kamiński K, Paluch M, Kamińska E. High pressure aging studies on the low-molecular weight glass-forming pharmaceutical – Probucol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
11
|
Kamińska E, Minecka A, Tarnacka M, Kamiński K, Paluch M. Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|