1
|
Albertini S, Gruber E, Zappa F, Krasnokutski S, Laimer F, Scheier P. Chemistry and physics of dopants embedded in helium droplets. MASS SPECTROMETRY REVIEWS 2022; 41:529-567. [PMID: 33993543 DOI: 10.1002/mas.21699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/18/2023]
Abstract
Helium droplets represent a cold inert matrix, free of walls with outstanding properties to grow complexes and clusters at conditions that are perfect to simulate cold and dense regions of the interstellar medium. At sub-Kelvin temperatures, barrierless reactions triggered by radicals or ions have been observed and studied by optical spectroscopy and mass spectrometry. The present review summarizes developments of experimental techniques and methods and recent results they enabled.
Collapse
Affiliation(s)
- Simon Albertini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Serge Krasnokutski
- Laboratory Astrophysics Group of the MPI for Astronomy, University of Jena, Jena, Germany
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Hirsch F, Fischer I, Bakels S, Rijs AM. Gas-Phase Infrared Spectra of the C 7H 5 Radical and Its Bimolecular Reaction Products. J Phys Chem A 2022; 126:2532-2540. [PMID: 35427137 DOI: 10.1021/acs.jpca.2c01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable C7H5 isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm-1. The radical is generated by pyrolysis from phthalide. Various jet-cooled reaction products are identified by their mass-selective IR spectra in the fingerprint region, based on a comparison with computed spectra. Interestingly, benzyl is present as a second resonance-stabilized radical. It is connected to fulvenallenyl by a sequence of two H atom losses or additions. Among the identified aromatic hydrocarbons are toluene and styrene, as well as polycyclic molecules, such as indene, naphthalene, fluorene and phenanthrene. Mechanisms for the formation of PAH from C7H5 have already been suggested in previous computational work. In particular, the radical/radical reaction of two fulvenallenyl radicals provides an efficient route to phenanthrene in one bimolecular step and might be relevant for PAH formation under astrochemical conditions.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
3
|
Zaleski DP, Sivaramakrishnan R, Weller HR, Seifert NA, Bross DH, Ruscic B, Moore KB, Elliott SN, Copan AV, Harding LB, Klippenstein SJ, Field RW, Prozument K. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. J Am Chem Soc 2021; 143:3124-3142. [PMID: 33615780 DOI: 10.1021/jacs.0c11677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.
Collapse
Affiliation(s)
- Daniel P Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hailey R Weller
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan A Seifert
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andreas V Copan
- Emmanuel College, Natural Sciences Department, Franklin Springs, Georgia 30639, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Franke PR, Stanton JF, Douberly GE. How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments. J Phys Chem A 2021; 125:1301-1324. [PMID: 33506678 DOI: 10.1021/acs.jpca.0c09526] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article primarily discusses the utility of vibrational perturbation theory for the prediction of X-H stretching vibrations with particular focus on the specific variant, second-order vibrational perturbation theory with resonances (VPT2+K). It is written as a tutorial, reprinting most important formulas and providing numerous simple examples. It discusses the philosophy and practical considerations behind vibrational simulations with VPT2+K, including but not limited to computational method selection, cost-saving approximations, approaches to evaluating intensity, resonance identification, and effective Hamiltonian structure. Particular attention is given to resonance treatments, beginning with simple Fermi dyads and gradually progressing to arbitrarily large polyads that describe both Fermi and Darling-Dennison resonances. VPT2+K combined with large effective Hamiltonians is shown to be a reliable framework for modeling the complicated CH stretching spectra of alkenes. An error is also corrected in the published analytic formula for the VPT2 transition moment between the vibrational ground state and triply excited states.
Collapse
Affiliation(s)
- Peter R Franke
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Gary E Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|