1
|
Hörmann M, Visentin F, Chakraborty SK, Nayak B, Sahoo PK, Cerullo G, Camargo FVA. Self-referencing for quasi shot-noise-limited widefield transient microscopy. OPTICS EXPRESS 2024; 32:21230-21242. [PMID: 38859482 DOI: 10.1364/oe.525581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Many applications of ultrafast and nonlinear optical microscopy require the measurement of small differential signals over large fields-of-view. Widefield configurations drastically reduce the acquisition time; however, they suffer from the low frame rates of two-dimensional detectors, which limit the modulation frequency, making the measurement sensitive to excess laser noise. Here we introduce a self-referenced detection configuration for widefield differential imaging. Employing regions of the field of view with no differential signal as references, we cancel probe fluctuations and increase the signal-to-noise ratio by an order of magnitude reaching noise levels only a few percent above the shot noise limit. We anticipate broad applicability of our method to transient absorption, stimulated Raman scattering and photothermal-infrared microscopies.
Collapse
|
2
|
Thomas AS, Bhat VN, Tiwari V. Rapid scan white light two-dimensional electronic spectroscopy with 100 kHz shot-to-shot detection. J Chem Phys 2023; 159:244202. [PMID: 38156635 DOI: 10.1063/5.0179474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
We demonstrate an approach to two-dimensional electronic spectroscopy (2DES) that combines the benefits of shot-to-shot detection at high-repetition rates with the simplicity of a broadband white light continuum input and conventional optical elements to generate phase-locked pump pulse pairs. We demonstrate this through mutual synchronization between the laser repetition rate, the acousto-optical deflector, the pump delay stage, and the CCD line camera, which allows for rapid scanning of pump optical delay synchronously with the laser repetition rate, while the delay stage is moved at a constant velocity. The resulting shot-to-shot detection scheme is repetition rate scalable and only limited by the CCD line rate and the maximum stage velocity. Using this approach, we demonstrate the measurement of an averaged 2DES absorptive spectrum in as much as 1.2 s of continuous sample exposure per 2D spectrum. We achieve a signal-to-noise ratio of 6.8 for optical densities down to 0.05 with 11.6 s of averaging at 100 kHz laser repetition rate. Combining rapid scanning of mechanical delay lines with shot-to-shot detection as demonstrated here provides a viable alternative to acousto-optic pulse shaping approaches that is repetition-rate scalable, has comparable throughput and sensitivity, and minimizes sample exposure per 2D spectrum with promising micro-spectroscopy applications.
Collapse
Affiliation(s)
- Asha S Thomas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek N Bhat
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
3
|
Schwarzl R, Heim P, Schiek M, Grimaldi D, Hohenau A, Krenn JR, Koch M. Transient absorption microscopy setup with multi-ten-kilohertz shot-to-shot subtraction and discrete Fourier analysis. OPTICS EXPRESS 2022; 30:34385-34395. [PMID: 36242451 DOI: 10.1364/oe.466272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Recording of transient absorption microscopy images requires fast detection of minute optical density changes, which is typically achieved with high-repetition-rate laser sources and lock-in detection. Here, we present a highly flexible and cost-efficient detection scheme based on a conventional photodiode and an USB oscilloscope with MHz bandwidth, that deviates from the commonly used lock-in setup and achieves benchmark sensitivity. Our scheme combines shot-to-shot evaluation of pump-probe and probe-only measurements, a home-built photodetector circuit optimized for low pulse energies applying low-pass amplification, and a custom evaluation algorithm based on Fourier transformation. Advantages of this approach include abilities to simultaneously monitor multiple pulse modulation frequencies, implement the detection of additional pulse sequences (e.g., pump-only), and expand to multiple parallel detection channels for wavelength-dispersive probing. With a 40 kHz repetition-rate laser system powering two non-collinear optical parametric amplifiers for wide tuneability, we find that laser pulse fluctuations limit the sensitivity of the setup, while the detection scheme has negligible contribution. We demonstrate the 2-D imaging performance of our transient absorption microscope with studies on micro-crystalline molecular thin films.
Collapse
|
4
|
Lyu PT, Li QY, Wu P, Sun C, Kang B, Chen HY, Xu JJ. Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution. J Am Chem Soc 2022; 144:13928-13937. [PMID: 35866699 DOI: 10.1021/jacs.2c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Energy carrier evolution is crucial for material performance. Ultrafast microscopy has been widely applied to visualize the spatiotemporal evolution of energy carriers. However, direct imaging of a small amount of energy carriers on the nanoscale remains difficult due to extremely weak transient signals. Here, we present a method for ultrasensitive and high-throughput imaging of energy carrier evolution in space and time. This method combines femtosecond pump-probe techniques with interferometric scattering microscopy (iSCAT), named Femto-iSCAT. The interferometric principle and unique spatially modulated contrast enhancement enable the exploration of new science. We address three important and challenging problems: transport of different energy carriers at various interfaces, heterogeneous hot-electron distribution and relaxation in single plasmonic resonators, and distinct structure-dependent edge-state dynamics of carriers and excitons in optoelectronic semiconductors. Femto-iSCAT holds great potential as a universal tool for ultrasensitive imaging of energy carrier evolution in space and time.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing-Yue Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Hartland GV. Virtual Issue on Super-Resolution Far-Field Optical Microscopy. J Phys Chem B 2021; 124:1581-1584. [PMID: 32131600 DOI: 10.1021/acs.jpcb.0c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
McCoy AB. Virtual Issue on New Tools and Methods in Physical Chemistry Research. J Phys Chem A 2020; 124:4323-4324. [PMID: 32493016 DOI: 10.1021/acs.jpca.0c04262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Hartland GV. Virtual Issue on Super-Resolution Far-Field Optical Microscopy. J Phys Chem A 2020; 124:1669-1672. [PMID: 32131601 DOI: 10.1021/acs.jpca.0c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Schnedermann C, Sung J, Pandya R, Verma SD, Chen RYS, Gauriot N, Bretscher HM, Kukura P, Rao A. Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale. J Phys Chem Lett 2019; 10:6727-6733. [PMID: 31592672 PMCID: PMC6844127 DOI: 10.1021/acs.jpclett.9b02437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100-2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale.
Collapse
Affiliation(s)
- Christoph Schnedermann
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
- E-mail: (C.S.)
| | - Jooyoung Sung
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Raj Pandya
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sachin Dev Verma
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Richard Y. S. Chen
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nicolas Gauriot
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Hope M. Bretscher
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Philipp Kukura
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
- E-mail: (A.R.)
| |
Collapse
|