1
|
Marks JH, Bai X, Nikolayev AA, Gong Q, Zhu C, Kleimeier NF, Turner AM, Singh SK, Wang J, Yang J, Pan Y, Yang T, Mebel AM, Kaiser RI. Methanetriol─Formation of an Impossible Molecule. J Am Chem Soc 2024; 146:12174-12184. [PMID: 38629886 DOI: 10.1021/jacs.4c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Orthocarboxylic acids─organic molecules carrying three hydroxyl groups at the same carbon atom─have been distinguished as vital reactive intermediates by the atmospheric science and physical (organic) chemistry communities as transients in the atmospheric aerosol cycle. Predicted short lifetimes and their tendency to dehydrate to a carboxylic acid, free orthocarboxylic acids, signify one of the most elusive classes of organic reactive intermediates, with even the simplest representative methanetriol (CH(OH)3)─historically known as orthoformic acid─not previously been detected experimentally. Here, we report the first synthesis of the previously elusive methanetriol molecule in low-temperature mixed methanol (CH3OH) and molecular oxygen (O2) ices subjected to energetic irradiation. Supported by electronic structure calculations, methanetriol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies and the detection of photoionization fragments. The first synthesis and detection of methanetriol (CH(OH)3) reveals its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition. These findings progress our fundamental understanding of the chemistry and chemical bonding of methanetriol, hydroxyperoxymethane (CH3OOOH), and hydroxyperoxymethanol (CH2(OH)OOH), which are all prototype molecules in the oxidation chemistry of the atmosphere.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xilin Bai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | | | - Qi'ang Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Cheng Zhu
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - N Fabian Kleimeier
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Santosh K Singh
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Jia Wang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Tao Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Klippenstein SJ. Spiers Memorial Lecture: theory of unimolecular reactions. Faraday Discuss 2022; 238:11-67. [DOI: 10.1039/d2fd00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One hundred years ago, at an earlier Faraday Discussion meeting, Lindemann presented a mechanism that provides the foundation for contemplating the pressure dependence of unimolecular reactions. Since that time, our...
Collapse
|
3
|
Zhao H, Liu S, Yan C, Huang C, Qi Y, Zhang F, Ju Y. Studies of Ozone-Sensitized Low- and High-Temperature Oxidations of Diethyl Carbonate. J Phys Chem A 2021; 125:1760-1765. [PMID: 33525870 DOI: 10.1021/acs.jpca.0c09002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diethyl carbonate (DEC) oxidation with different levels of O3 addition was performed in an atmospheric laminar flow reactor from 400 to 850 K. Experimental results showed that, without O3 addition, the oxidation of DEC began from 650 K with no low-temperature reactivity, while with O3 addition the low-temperature chemistry of DEC was observed from 450 K. A DEC/O3 kinetic model was developed, and the model predictions agreed with the experimental data reasonably well with a slight overprediction of DEC oxidation between 550 and 750 K. The low-temperature chemistry of DEC with O3 addition was described in the reaction pathway of DEC. It was found that O3 assisted the low-temperature oxidation of DEC mainly through the production of the active O: atom instead of the direct reaction with the fuel molecule. The present work indicated that the Li-ion battery degradation at 400-500 K might result from the low-temperature chemistry of DEC with active oxygen supplies from the cathode metal oxide materials or from singlet O2 during the battery discharge process. This article used O3 to mimic the oxidizing environment in the Li-ion battery by providing active atomic oxygen. It provided insights into the chemically sensitized gas-phase low-temperature chemistry of DEC and explained the mechanism of battery degradation involving the low-temperature oxidation at the electrolyte solvent and the cathode interface from 400 to 500 K.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States.,Department of Mechanical Engineering, The Hong Kong Polytechnic UniversityHung Hom, Hong Kong
| | - Shixiang Liu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Chao Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Can Huang
- Chair of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Yongfeng Qi
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Feng Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|