1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Singh S, Mukherjee TK. Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O 2 toward highly efficient oxidative coupling of arylamines to azoaromatics. Chem Sci 2024:d4sc04115a. [PMID: 39144455 PMCID: PMC11320377 DOI: 10.1039/d4sc04115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Photosensitizer (PS)-mediated generation of singlet oxygen, O2 (a1Δg) is a well-explored phenomenon in chemistry and biology. However, the requirement of appropriate PSs with optimum excited state properties is a prerequisite for this approach which limits its widespread application. Herein, we report the generation of O2 (a1Δg) via direct charge-transfer (CT) excitation of the solvent-O2 (X3Σg -) collision complex without any PS and utilize it for the catalyst-free oxidative coupling of arylamines to azoaromatics under ambient conditions in aqueous medium. Electron paramagnetic resonance (EPR) spectroscopy revealed the formation of O2 (a1Δg) upon direct excitation with 370 nm light. The present approach shows broad substrate scope, remarkably fast reaction kinetics (90 and 40 min under an open and O2 atm, respectively), high selectivity (100%), and excellent yields (up to 100%), and works well for both homo- and hetero-coupling of arylamines. The oxidative coupling of arylamines was found to proceed through the generation of amine radicals via electron transfer (ET) from amines to O2 (a1Δg). Notably, electron-rich amines show higher yields of azo products compared to electron-deficient amines. Detailed mechanistic investigations using various spectroscopic tools revealed the formation of hydrazobenzene as an intermediate along with superoxide radicals which subsequently transform to hydrogen peroxide. The present study is unique in the way that molecular O2 simultaneously acts as a light-absorbing chromophore (solvent-O2 complex) as well as an efficient oxidant (O2 (a1Δg)) in the same reaction. This is the first report on the efficient, selective, and sustainable synthesis of azo compounds in aqueous medium under an ambient atmosphere without any PCs/PSs and paves the way for further in-depth understanding of the chemical reactivity of O2 (a1Δg) generated directly via CT excitation of the solvent-O2 complex toward various photochemical and photobiological transformations.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| |
Collapse
|
3
|
Olaizola AM, Kuis R, Johnson A, Kingsley D. Stimulated Raman generation of aqueous singlet oxygen without photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112562. [PMID: 36095974 DOI: 10.1016/j.jphotobiol.2022.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Singlet oxygen is traditionally produced via photosensitizer molecules such as methylene blue, which function as catalysts. Here we investigate stimulated Raman generation of singlet oxygen from dissolved oxygen in both water (H2O) and heavy water (D2O) using nanosecond-pulsed visible blue laser light in the 400-440 nm spectral region without singlet oxygen photosensitizers. We report an oxygen-dependent Stokes peak in the red spectrum (600-670 nm) that is identical when produced in H2O and D2O. These red Stokes photons are not detected when an oxygen quencher is present. Temporal photodepletion of the uric acid absorbance peak at 294 nm is consistent with singlet oxygen generation. We postulate that a two-photon stimulated Raman process produces singlet oxygen from O2 dissolved within the solvents. We note that the energy difference between input and output photons of 0.97 eV is precisely the energy needed to excite O2 to its singlet state.
Collapse
Affiliation(s)
- Aristides Marcano Olaizola
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| | - Robinson Kuis
- Center for Advanced Studies in Photonics Research, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States of America
| | - Anthony Johnson
- Center for Advanced Studies in Photonics Research, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States of America
| | - David Kingsley
- Residue Chemistry and Predictive Microbiology Research Unit, US Dept. of Agriculture, Agriculture Research Service, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, United States of America
| |
Collapse
|
4
|
Thorning F, Jensen F, Ogilby PR. The oxygen-organic molecule photosystem: revisiting the past, recalibrating the present, and redefining the future. Photochem Photobiol Sci 2022; 21:1133-1141. [PMID: 35284990 DOI: 10.1007/s43630-022-00196-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022]
Abstract
Perturbation by a neighboring molecule M appreciably alters the properties of both the ground and excited states of molecular oxygen, as reflected in a variety of photophysical phenomena. In this article, we build upon the ~ 100 year history of work in this field, illustrating how the M-O2 system continues to challenge the scientific community, facilitating better insight into fundamental tenets of chemistry and physics.
Collapse
Affiliation(s)
| | - Frank Jensen
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
5
|
Parsons BF, Freitag MA, Warder HJ. Singlet O 2 Produced by Ultraviolet Dissociation of the β-ionone-O 2 Complex. J Phys Chem A 2021; 125:8649-8657. [PMID: 34554753 DOI: 10.1021/acs.jpca.1c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We formed the gas-phase β-ionone-O2 complex in a supersonic expansion and then photodissociated the complex with light near 312 nm. Photodissociation resulted in the production of O2 in the a 1Δg state, which was ionized at 312 nm using (2 + 1) resonance-enhanced multiphoton ionization (REMPI). We recorded the 1O2 REMPI action spectrum and O2+ velocity map ion image following photodissociation of the complex. From the velocity map image, we determined the total recoil kinetic energy distribution from dissociation of the complex. Fitting the REMPI spectrum showed that the 1O2 product has an effective rotational temperature of about 50 K, while the recoil kinetic energy distribution was well fit with a statistical Boltzmann distribution having an effective translational temperature of 289 K. Using the average translational energy from the Boltzmann fit along with the complex dissociation energy from ab initio calculations, we determined that β-ionone was formed with an average of 2.87 eV of internal energy, which was 0.49 eV higher than previous measurements for the β-ionone triplet-state energy. Our own CCSD/cc-pVDZ//(U)MP2/cc-pVDZ calculations gave a minimum triplet-state energy of 2.04 eV. However, a large structural change occurs between the minimum singlet-ground-state geometry and the minimum triplet-excited-state geometry, and as a result, the calculated vertical energy for the triplet-state β-ionone was determined to be 3.30 eV. Comparing the ab initio and experimental results indicated that following excitation, β-ionone was formed in the triplet state but with significant internal vibrational energy. As such, complex dissociation likely proceeds following internal vibrational energy redistribution, which explains the statistical recoil kinetic energy distribution.
Collapse
Affiliation(s)
- Bradley F Parsons
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Mark A Freitag
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Hunter J Warder
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| |
Collapse
|
6
|
Thorning F, Strunge K, Jensen F, Ogilby PR. The complex between molecular oxygen and an organic molecule: modeling optical transitions to the intermolecular charge-transfer state. Phys Chem Chem Phys 2021; 23:15038-15048. [PMID: 34212959 DOI: 10.1039/d1cp01738a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collision complex between the ground electronic state of an organic molecule, M, and ground state oxygen, O2(X3Σg-), can absorb light to produce an intermolecular charge transfer (CT) state, often represented simply as the M radical cation, M+˙, paired with the superoxide radical anion, O2-˙. Aspects of this transition have been the subject of numerous studies for ∼70 years, many of which address fundamental concepts in chemistry and physics. We now examine the extent to which the combination of Molecular Dynamics simulations and electronic structure response methods can model transitions to the toluene-O2 CT state. To account for the experimental spectra, we consider (a) the distribution of toluene-O2 geometries that contribute to the transitions, (b) a quantitative description of intermolecular CT, and (c) oxygen-induced local transitions in toluene that complement the CT transitions, specifically transitions that populate toluene triplet states. We find that the latter oxygen-induced local transitions play a prominent role on the long wavelength side of the spectrum commonly attributed to the intermolecular CT transition. Our calculations provide a new perspective on the seminal discussion between R. S. Mulliken and D. F. Evans on the nature of O2-dependent transitions in organic molecules, and bode well for modeling transitions to excited states with CT character in noncovalent weakly-bonded molecular complexes.
Collapse
Affiliation(s)
| | - Kris Strunge
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Frank Jensen
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| |
Collapse
|