1
|
Trenerry MJ, Acosta M, Berry JF. Computational Analysis of Low Overpotential Ammonia Oxidation by Metal-Metal Bonded Ruthenium Catalysts, and Predictions for Related Osmium Catalysts. J Phys Chem A 2024; 128:4038-4051. [PMID: 38742806 DOI: 10.1021/acs.jpca.4c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The catalyzed electrochemical oxidation of ammonia to nitrogen (AOR) is an important fuel-cell half-reaction that underpins a future nitrogen-based energy economy. Our laboratory has reported spontaneous chemical and electrochemical oxidation of ammonia to dinitrogen via reaction of ammonia with the metal-metal bonded diruthenium complex Ru2(chp)4OTf (chp- = 2-chloro-6-hydroxypyridinate, TfO- = trifluoromethanesulfonate). This complex facilitates electrocatalytic ammonia oxidation at mild applied potentials of -255 mV vs ferrocene, which is the [Ru2(chp)4(NH3)]0/+ redox potential. We now report a comprehensive computational investigation of possible mechanisms for this reaction and electronic structure analysis of key intermediates therein. We extend this analysis to proposed second-generation electrocatalysts bearing structurally similar fhp and hmp (2-fluoro-6-hydroxypyridinate and 2-hydroxy-6-methylpyridinate, respectively) equatorial ligands, and we further expand this study from Ru2 to analogous Os2 cores. Predicted M24+/5+ redox potentials, which we expect to correlate with experimental AOR overpotential, depend strongly on the identity of the metal center, and to a lesser degree on the nature of the equatorial supporting ligand. Os2 complexes are easier to oxidize than analogous Ru2 complexes by ∼640 mV, on average. In contrast to mono-Ru catalysts, which oxidize ammonia via a rate-limiting activation of the strong N-H bond, we find lowest-energy reaction pathways for Ru2 and Os2 complexes that involve direct N-N bond formation onto electrophilic intermediates having terminal amido, imido, or nitrido groups. While transition state energies for Os2 complexes are high, those for Ru2 complexes are moderate and notably lower than those for mono-Ru complexes. We attribute these lower barriers to enhanced electrophilicity of the Ru2 intermediates, which is a consequence of their metal-metal bonded structure. Os2 intermediates are found to be, surprisingly, less electrophilic, and we suggest that Os2 complexes may require access to oxidation states higher than Os25+ in order to perform AOR at reasonable reaction rates.
Collapse
Affiliation(s)
- Michael J Trenerry
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Milton Acosta
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Chen CP, Alharbi W, Cundari TR, Hamann TW, Smith MR. Deciphering the Mechanism of Base-Triggered Conversion of Ammonia to Molecular Nitrogen and Methylamine to Cyanide. J Am Chem Soc 2023; 145:26339-26349. [PMID: 38011890 DOI: 10.1021/jacs.3c09879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report an in-depth investigation into the ammonia oxidation mechanism by the catalyst [RuIII(tpy)(dmabpy)NH3]3+ ([Ru(NH3)]3+). Stoichiometric reactions of [Ru(NH3)]3+ were carried out with exogenous noncoordinating bases to trigger a proposed redox disproportionation reaction, which was followed using variable-temperature NMR spectroscopy. An intermediate species was identified as a dinitrogen-bridged complex using 15N NMR and Raman spectroscopy on isotopically labeled complexes. This intermediate is proposed to derive from coupling of nitridyl species formed upon sequential redox disproportion reactions. Acetonitrile displaces the dinitrogen bridge to yield free N2. DFT calculations support this lower-energy pathway versus that previously reported for ammonia oxidation by the parent [RuIII(tpy)(bpy)NH3]3+ complex. These experimental and computational results are consistent with the interpretation of redox disproportionation involving sequential hydrogen atom transfer reactions by an amide/aminyl intermediate, [Ru(NH2)-]+ ⇔ [Ru(NH2)•]+, formed upon deprotonation of the parent complex. Control experiments employing a large excess of ammonia as a base indicate this new proposed lower-energy pathway contributes to the oxidation of ammonia to dinitrogen in conditions relevant to electrocatalysis. In addition, analogous methylamine complexes, [Ru(NH2CH3)]2+/3+, were prepared to further test the proposed mechanism. Treating [Ru(NH2CH3)]3+ with a base cleanly yields two products [Ru(NH2CH3)]2+ and [Ru(CN)]+ in an ∼3:1 ratio, fully consistent with the proposed cascade of hydrogen atom transfer reactions by an intermediate.
Collapse
Affiliation(s)
- Chuan-Pin Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Waad Alharbi
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Thomas R Cundari
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Milton R Smith
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Ahmed ME, Raghibi Boroujeni M, Ghosh P, Greene C, Kundu S, Bertke JA, Warren TH. Electrocatalytic Ammonia Oxidation by a Low-Coordinate Copper Complex. J Am Chem Soc 2022; 144:21136-21145. [DOI: 10.1021/jacs.2c07977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Md Estak Ahmed
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Mahdi Raghibi Boroujeni
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Christine Greene
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Subrata Kundu
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Timothy H. Warren
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| |
Collapse
|
4
|
Dunn PL, Barona M, Johnson SI, Raugei S, Bullock RM. Hydrogen Atom Abstraction from an Os II(NH 3) 2 Complex Generates an Os IV(NH 2) 2 Complex: Experimental and Computational Analysis of the N-H Bond Dissociation Free Energies and Reactivity. Inorg Chem 2022; 61:15325-15334. [PMID: 36121917 DOI: 10.1021/acs.inorgchem.2c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double hydrogen atom abstraction from (TMP)OsII(NH3)2 (TMP = tetramesitylporphyrin) with phenoxyl or nitroxyl radicals leads to (TMP)OsIV(NH2)2. This unusual bis(amide) complex is diamagnetic and displays an N-H resonance at 12.0 ppm in its 1H NMR spectrum. 1H-15N correlation experiments identified a 15N NMR spectroscopic resonance signal at -267 ppm. Experimental reactivity studies and density functional theory calculations support relatively weak N-H bonds of 73.3 kcal/mol for (TMP)OsII(NH3)2 and 74.2 kcal/mol for (TMP)OsIII(NH3)(NH2). Cyclic voltammetry experiments provide an estimate of the pKa of [(TMP)OsIII(NH3)2]+. In the presence of Barton's base, a current enhancement is observed at the Os(III/II) couple, consistent with an ECE event. Spectroscopic experiments confirmed (TMP)OsIV(NH2)2 as the product of bulk electrolysis. Double hydrogen atom abstraction is influenced by π donation from the amides of (TMP)OsIV(NH2)2 into the d orbitals of the Os center, favoring the formation of (TMP)OsIV(NH2)2 over N-N coupling. This π donation leads to a Jahn-Teller distortion that splits the energy levels of the dxz and dyz orbitals of Os, results in a low-spin electron configuration, and leads to minimal aminyl character on the N atoms, rendering (TMP)OsIV(NH2)2 unreactive toward amide-amide coupling.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Melissa Barona
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simone Raugei
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Connor GP, Delony D, Weber JE, Mercado BQ, Curley JB, Schneider S, Mayer JM, Holland PL. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chem Sci 2022; 13:4010-4018. [PMID: 35440977 PMCID: PMC8985503 DOI: 10.1039/d1sc04503b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium(iii) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH2)2Cl]+, or results in dehydrohalogenation to the rhenium(iii) amido complex, (PNP)Re(NH2)Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol−1, while DFT computations indicate a substantially weaker N–H bond of the putative rhenium(iv)-imide intermediate (BDE = 38 kcal mol−1). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH3 generation. Rhenium–PNP complexes split N2 to nitrides, but the nitrides do not give ammonia. Here, the thermodynamics of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, showing that the first H addition is the bottleneck.![]()
Collapse
Affiliation(s)
- Gannon P Connor
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Daniel Delony
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - Jeremy E Weber
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | | - Julia B Curley
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Sven Schneider
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - James M Mayer
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | |
Collapse
|
6
|
Barona M, Johnson SI, Mbea M, Bullock RM, Raugei S. Computational Investigations of the Reactivity of Metalloporphyrins for Ammonia Oxidation. Top Catal 2022. [DOI: 10.1007/s11244-021-01511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
|
8
|
Holub J, Vereshchuk N, Sánchez-Baygual FJ, Gil-Sepulcre M, Benet-Buchholz J, Llobet A. Synthesis, Structure, and Ammonia Oxidation Catalytic Activity of Ru-NH 3 Complexes Containing Multidentate Polypyridyl Ligands. Inorg Chem 2021; 60:13929-13940. [PMID: 34491057 DOI: 10.1021/acs.inorgchem.1c01528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ammonia (electro)oxidation with molecular catalysts is a rapidly developing topic with wide practical applications ahead. We report here the catalytic ammonia oxidation reaction (AOR) activity using [Ru(tda-κ-N3O)(py)2], 2, (tda2- is 2,2':6',2''-terpyridine-6,6''-dicarboxylate; py is pyridine) as a catalyst precursor. Furthermore, we also describe the rich chemistry associated with the reaction of Ru-tda and Ru-tPa (tPa-4 is 2,2':6',2''-terpyridine-6,6''-diphosphonate) complexes with NH3 and N2H4 using [RuII(tda-κ-N3O)(dmso)Cl] (dmso is dimethyl sulfoxide) and [RuII(tPa-κ-N3O)(py)2], 8, as synthetic intermediates, respectively. All the new complexes obtained here were characterized spectroscopically by means of UV-vis and NMR. In addition, a crystal X-ray diffraction analysis was performed for complexes trans-[RuII(tda-κ-N3)(py)2(NH3)], 4, trans-[RuII(tda-κ-N3)(N-NH2)(py)2], 5, cis-[RuII(tda-κ-N3)(py)(NH3)2], 6 (30%), and cis-[RuII(tda-k-N3)(dmso)(NH3)2], 7 (70%). The AOR activity associated with 2 and 8 as catalyst precursors was studied in organic and aqueous media. For 2, turnover numbers of 7.5 were achieved under bulk electrolysis conditions at an Eapp = 1.4 V versus normal hydrogen electrode in acetonitrile. A catalytic cycle is proposed based on electrochemical and kinetic evidence.
Collapse
Affiliation(s)
- Jan Holub
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Nataliia Vereshchuk
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Francisco-Javier Sánchez-Baygual
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Toda H, Kuroki K, Kanega R, Kuriyama S, Nakajima K, Himeda Y, Sakata K, Nishibayashi Y. Manganese-Catalyzed Ammonia Oxidation into Dinitrogen under Chemical or Electrochemical Conditions*. Chempluschem 2021; 86:1511-1516. [PMID: 34519172 DOI: 10.1002/cplu.202100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Earth-abundant metal-catalyzed oxidative conversion of ammonia into dinitrogen is a promising process to utilize ammonia as a transportation fuel. Herein, we report the manganese-catalyzed ammonia oxidation under chemical or electrochemical conditions using a manganese complex bearing (1S,2S)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine. Under chemical conditions using oxidant, up to 17.1 equivalents of N2 per catalyst are generated. Also, mechanistic studies by stoichiometric reactions reveal that a nucleophilic attack of ammonia on manganese nitrogenous species occurs to form a nitrogen-nitrogen bond leading to dinitrogen. Moreover, we conduct density functional theory (DFT) calculations to confirm the plausible reaction mechanism. In addition, this reaction system is applicable under electrochemical conditions. The catalytic reaction proceeds with 96 % faradaic efficiency (FE) in bulk electrolysis to give up to 6.56 equivalents of N2 per catalyst.
Collapse
Affiliation(s)
- Hiroki Toda
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
| | - Kaito Kuroki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
| | - Ryoichi Kanega
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 305-8565, Tsukuba, Ibaraki, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
| | - Kazunari Nakajima
- Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
| | - Yuichiro Himeda
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 305-8565, Tsukuba, Ibaraki, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University Miyama, 274-8510, Funabashi, Chiba, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Li Y, Wang H, Priest C, Li S, Xu P, Wu G. Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000381. [PMID: 32671924 DOI: 10.1002/adma.202000381] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Clean and efficient energy storage and conversion via sustainable water and nitrogen reactions have attracted substantial attention to address the energy and environmental issues due to the overwhelming use of fossil fuels. These electrochemical reactions are crucial for desirable clean energy technologies, including advanced water electrolyzers, hydrogen fuel cells, and ammonia electrosynthesis and utilization. Their sluggish reaction kinetics lead to inefficient energy conversion. Innovative electrocatalysis, i.e., catalysis at the interface between the electrode and electrolyte to facilitate charge transfer and mass transport, plays a vital role in boosting energy conversion efficiency and providing sufficient performance and durability for these energy technologies. Herein, a comprehensive review on recent progress, achievements, and remaining challenges for these electrocatalysis processes related to water (i.e., oxygen evolution reaction, OER, and oxygen reduction reaction, ORR) and nitrogen (i.e., nitrogen reduction reaction, NRR, for ammonia synthesis and ammonia oxidation reaction, AOR, for energy utilization) is provided. Catalysts, electrolytes, and interfaces between the two within electrodes for these electrocatalysis processes are discussed. The primary emphasis is device performance of OER-related proton exchange membrane (PEM) electrolyzers, ORR-related PEM fuel cells, NRR-driven ammonia electrosynthesis from water and nitrogen, and AOR-related direct ammonia fuel cells.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Huanhuan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Siwei Li
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ping Xu
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
11
|
Dunn PL, Cook BJ, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia with Molecular Complexes. J Am Chem Soc 2020; 142:17845-17858. [PMID: 32977718 DOI: 10.1021/jacs.0c08269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation of ammonia by molecular complexes is a burgeoning area of research, with critical scientific challenges that must be addressed. A fundamental understanding of individual reaction steps is needed, particularly for cleavage of N-H bonds and formation of N-N bonds. This Perspective evaluates the challenges of designing molecular catalysts for oxidation of ammonia and highlights recent key contributions to realizing the goals of viable energy storage and retrieval based on the N-H bonds of ammonia in a carbon-free energy cycle.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian J Cook
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Dunn PL, Johnson SI, Kaminsky W, Bullock RM. Diversion of Catalytic C-N Bond Formation to Catalytic Oxidation of NH 3 through Modification of the Hydrogen Atom Abstractor. J Am Chem Soc 2020; 142:3361-3365. [PMID: 32009401 DOI: 10.1021/jacs.9b13706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO·), abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO· to form 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to 2,6-di-tert-butyl-4-tritylphenoxyl radical, which contains a trityl group at the para position, prevents C-N coupling and diverts the reaction to catalytic oxidation of NH3 to give N2. We achieved 125 ± 5 turnovers at 22 °C for oxidation of NH3, the highest turnover number (TON) reported to date for a molecular catalyst.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Werner Kaminsky
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|
14
|
Cook BJ, Johnson SI, Chambers GM, Kaminsky W, Bullock RM. Triple hydrogen atom abstraction from Mn–NH3 complexes results in cyclophosphazenium cations. Chem Commun (Camb) 2019; 55:14058-14061. [DOI: 10.1039/c9cc06915a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All three H atoms of the NH3 ligand of [Mn(depe)2(CO)(NH3)]+ are abstracted by an organic radical, giving a rare cyclophosphazenium cation; computations suggest that insertion of NHx into a Mn–P bond provides a strong thermodynamic driving force.
Collapse
Affiliation(s)
- Brian J. Cook
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | - Samantha I. Johnson
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | - Geoffrey M. Chambers
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | | | - R. Morris Bullock
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| |
Collapse
|