1
|
Wu G, Dai Y, Hung I, Gan Z, Terskikh V. 1H/ 17O Chemical Shift Waves in Carboxyl-Bridged Hydrogen Bond Networks in Organic Solids. J Phys Chem A 2024; 128:4288-4296. [PMID: 38748612 DOI: 10.1021/acs.jpca.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa K1A 0R6, Canada
| |
Collapse
|
2
|
Wong JHM, Tan RPT, Chang JJ, Ow V, Yew PYM, Chee PL, Kai D, Loh XJ, Xue K. Dynamic grafting of carboxylates onto poly(vinyl alcohol) polymers for supramolecularly-crosslinked hydrogel formation. Chem Asian J 2022; 17:e202200628. [PMID: 35977910 DOI: 10.1002/asia.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next generation hydrogel materials.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Valerie Ow
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Pei Lin Chee
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Dan Kai
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | |
Collapse
|
3
|
Kurzydłowski D. Potential energy barrier for proton transfer in compressed benzoic acid. RSC Adv 2022; 12:11436-11441. [PMID: 35425083 PMCID: PMC9004587 DOI: 10.1039/d2ra01736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Benzoic acid (BA) is a model system for studying proton transfer (PT) reactions. The properties of solid BA subject to high pressure (exceeding 1 kbar = 0.1 GPa) are of particular interest due to the possibility of compression-tuning of the PT barrier. Here we present simulations aimed at evaluating the value of this barrier in solid BA in the 1 atm - 15 GPa pressure range. We find that pressure-induced shortening of O⋯O contacts within the BA dimers leads to a decrease in the PT barrier, and subsequent symmetrization of the hydrogen bond. However, this effect is obtained only after taking into account zero-point energy (ZPE) differences between BA tautomers and the transition state. The obtained results shed light on previous experiments on compressed benzoic acid, and indicate that a common scaling behavior with respect to the O⋯O distance might be applicable for hydrogen-bond symmetrization in both organic and inorganic systems.
Collapse
Affiliation(s)
- Dominik Kurzydłowski
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw 01-038 Warsaw Poland
| |
Collapse
|
4
|
Altenhof AR, Gan Z, Schurko RW. Reducing the effects of weak homonuclear dipolar coupling with CPMG pulse sequences for static and spinning solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107174. [PMID: 35279507 DOI: 10.1016/j.jmr.2022.107174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The Carr-Purcell/Meiboom-Gill (CPMG) pulse sequence, initially introduced for measuring transverse relaxation time constants (T2), can provide significant signal enhancements for solid-state NMR (SSNMR) spectra. The proper implementation of CPMG for acquiring spectra influenced by chemical shift anisotropies (CSAs), first and/or second order quadrupolar interactions, or paramagnetic broadening has been well documented to date, as have the effects of heteronuclear dipolar coupling on CPMG echo trains and T2 lifetimes. Homonuclear dipolar coupling can also impact T2 lifetimes and CPMG echo trains; these effects have been thoroughly investigated for spectra of homonuclear dipolar coupled spin-1/2 nuclei typically acquired under static conditions that are predominantly influenced by dipolar broadening (e.g., 1H, 19F, etc.). In particular, it has been shown that short refocusing pulses with small flip angles can extend the effective T2 (T2eff, the observed T2 constant as impacted by experimental conditions) measured by CPMG sequences for strong homonuclear dipolar coupled spin-1/2 pairs under static conditions. To date, these effects have not been explored for (i) spin-1/2 nuclei that have significant CSAs and simultaneously feature weak homonuclear dipolar couplings, (ii) for quadrupolar nuclei that are also weakly homonuclear dipolar coupled, and (iii) for either of these cases under magic-angle spinning (MAS) conditions. Herein, we demonstrate that short refocusing pulses that cause small flip angles can reduce the attenuation of signal in CPMG echo trains resulting from dipolar dephasing caused by the weak homonuclear dipolar couplings. For both spin-1/2 and quadrupolar nuclei, this can lead to significant extensions in T2eff and signal enhancements of up to three times compared to conventional CPMG in favourable cases. These phenomena can occur under both static and magic-angle spinning (MAS) conditions, in the latter of which homonuclear couplings are reintroduced by rotational resonance (R2) recoupling. Experimental examples of 13C (I = 1/2), 2H (I = 1), 87Rb (I = 3/2), 23Na (I = 3/2), and 35Cl (I = 3/2) NMR under static and MAS conditions, as well as simulations of these phenomena, are shown and discussed.
Collapse
Affiliation(s)
- Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
5
|
Wang F, Ramakrishna SK, Sun P, Fu R. Triple-pulse excitation: An efficient way for suppressing background signals and eliminating radio-frequency acoustic ringing in direct polarization NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107067. [PMID: 34634650 DOI: 10.1016/j.jmr.2021.107067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Direct polarization using a single pulse is the simplest excitation scheme in nuclear magnetic resonance (NMR) experiments, capable of quantifying various compositions in many materials applications. However, this single-pulse excitation generally gives rise to NMR spectra with a severely distorted baseline due to the background signals arising from probe components and/or due to the radio-frequency (RF) acoustic ringing, especially in low-γ nuclei and wide-line NMR. In this work, a triple-pulse excitation scheme is proposed to simultaneously suppress the background signals and eliminate the RF acoustic ringing. The acoustic ringing is cancelled through subtraction in any two consecutive scans by alternating the receiver phase while keeping the phase of the pulse right before acquisition the same. While the triple-pulse scheme generates an additional flip-angle dependent scaling to the traditional single-pulse excitation profile in such a way that the scaling is one when the flip-angle is ∼90° but becomes almost zero when the flip-angle is very small. Therefore, the background signals arising from the materials outside the sample coil experiencing a very small fraction of the RF flip-angles can be effectively suppressed. Various samples containing 1H and quadrupolar nuclei (17O, 25Mg, and 23Na) have been used to demonstrate the effectiveness of this newly proposed triple-pulse excitation in terms of suppressing the background signals and eliminating the acoustic ringing effects.
Collapse
Affiliation(s)
- Fenfen Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Sanath K Ramakrishna
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
6
|
Chen C, Goldberga I, Gaveau P, Mittelette S, Špačková J, Mullen C, Petit I, Métro T, Alonso B, Gervais C, Laurencin D. Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using 17 O and 2 H nuclear magnetic resonance analyses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:975-990. [PMID: 33615550 PMCID: PMC8518726 DOI: 10.1002/mrc.5141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 05/09/2023]
Abstract
Oxygen-17 and deuterium are two quadrupolar nuclei that are of interest for studying the structure and dynamics of materials by solid-state nuclear magnetic resonance (NMR). Here, 17 O and 2 H NMR analyses of crystalline ibuprofen and terephthalic acid are reported. First, improved 17 O-labelling protocols of these molecules are described using mechanochemistry. Then, dynamics occurring around the carboxylic groups of ibuprofen are studied considering variable temperature 17 O and 2 H NMR data, as well as computational modelling (including molecular dynamics simulations). More specifically, motions related to the concerted double proton jump and the 180° flip of the H-bonded (-COOH)2 unit in the crystal structure were looked into, and it was found that the merging of the C=O and C-OH 17 O resonances at high temperatures cannot be explained by the sole presence of one of these motions. Lastly, preliminary experiments were performed with a 2 H-17 O diplexer connected to the probe. Such configurations can allow, among others, 2 H and 17 O NMR spectra to be recorded at different temperatures without needing to tune or to change probe configurations. Overall, this work offers a few leads which could be of use in future studies of other materials using 17 O and 2 H NMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivan Petit
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRSParisFrance
| | | | - Bruno Alonso
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRSParisFrance
| | | |
Collapse
|
7
|
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).
Collapse
|
8
|
Špačková J, Fabra C, Mittelette S, Gaillard E, Chen CH, Cazals G, Lebrun A, Sene S, Berthomieu D, Chen K, Gan Z, Gervais C, Métro TX, Laurencin D. Unveiling the Structure and Reactivity of Fatty-Acid Based (Nano)materials Thanks to Efficient and Scalable 17O and 18O-Isotopic Labeling Schemes. J Am Chem Soc 2020; 142:21068-21081. [PMID: 33264006 PMCID: PMC7877562 DOI: 10.1021/jacs.0c09383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Fatty acids are ubiquitous in biological systems and widely used in materials science, including for the formulation of drugs and the surface-functionalization of nanoparticles. However, important questions regarding the structure and reactivity of these molecules are still to be elucidated, including their mode of binding to certain metal cations or materials surfaces. In this context, we have developed novel, efficient, user-friendly, and cost-effective synthetic protocols based on ball-milling, for the 17O and 18O isotopic labeling of two key fatty acids which are widely used in (nano)materials science, namely stearic and oleic acid. Labeled molecules were analyzed by 1H and 13C solution NMR, IR spectroscopy, and mass spectrometry (ESI-TOF and LC-MS), as well as 17O solid state NMR (for the 17O labeled species). In both cases, the labeling procedures were scaled-up to produce up to gram quantities of 17O- or 18O-enriched molecules in just half-a-day, with very good synthetic yields (all ≥84%) and enrichment levels (up to an average of 46% per carboxylic oxygen). The 17O-labeled oleic acid was then used for the synthesis of a metal soap (Zn-oleate) and the surface-functionalization of ZnO nanoparticles (NPs), which were characterized for the first time by high-resolution 17O NMR (at 14.1 and 35.2 T). This allowed very detailed insight into (i) the coordination mode of the oleate ligand in Zn-oleate to be achieved (including information on Zn···O distances) and (ii) the mode of attachment of oleic-acid at the surface of ZnO (including novel information on its photoreactivity upon UV-irradiation). Overall, this work demonstrates the high interest of these fatty acid-enrichment protocols for understanding the structure and reactivity of a variety of functional (nano)materials systems using high resolution analyses like 17O NMR.
Collapse
Affiliation(s)
| | - Charlyn Fabra
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | | | - Chia-Hsin Chen
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | - Aurélien Lebrun
- IBMM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | - Saad Sene
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL),
Florida State University, Tallahassee, Florida 32306,
United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL),
Florida State University, Tallahassee, Florida 32306,
United States
| | - Christel Gervais
- Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université,
CNRS, 75005 Paris, France
| | | | | |
Collapse
|
9
|
Xu Y, Szell PM, Kumar V, Bryce DL. Solid-state NMR spectroscopy for the analysis of element-based non-covalent interactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Rees GJ, Day SP, Barnsley KE, Iuga D, Yates JR, Wallis JD, Hanna JV. Measuring multiple 17O–13C J-couplings in naphthalaldehydic acid: a combined solid state NMR and density functional theory approach. Phys Chem Chem Phys 2020; 22:3400-3413. [DOI: 10.1039/c9cp03977e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined multinuclear solid-state NMR and a density functional theory computational approach, with SIMPSON simulations, is evaluated to determine the four heteronuclear 1J(13C,17O) couplings in naphthalaldehydic acid.
Collapse
Affiliation(s)
| | | | | | - Dinu Iuga
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | - John D. Wallis
- School of Science and Technology
- Nottingham Trent University
- Nottingham
- UK
| | - John V. Hanna
- Department of Physics
- University of Warwick
- Coventry
- UK
| |
Collapse
|