1
|
Ji Y, Luo W, Shi Q, Ma X, Wu Z, Zhang W, Gao Y, An T. Mechanisms of isomerization and hydration reactions of typical β-diketone at the air-droplet interface. J Environ Sci (China) 2024; 141:225-234. [PMID: 38408823 DOI: 10.1016/j.jes.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 02/28/2024]
Abstract
Acetylacetone (AcAc) is a typical class of β-diketones with broad industrial applications due to the property of the keto-enol isomers, but its isomerization and chemical reactions at the air-droplet interface are still unclear. Hence, using combined molecular dynamics and quantum chemistry methods, the heterogeneous chemistry of AcAc at the air-droplet interface was investigated, including the attraction of AcAc isomers by the droplets, the distribution of isomers at the air-droplet interface, and the hydration reactions of isomers at the air-droplet interface. The results reveal that the preferential orientation of two AcAc isomers (keto- and enol-AcAc) to accumulate and accommodate at the acidic air-droplet interface. The isomerization of two AcAc isomers at the acidic air-droplet interface is more favorable than that at the neutral air-droplet interface because the "water bridge" structure is destroyed by H3O+, especially for the isomerization from keto-AcAc to enol-AcAc. At the acidic air-droplet interface, the carbonyl or hydroxyl O-atoms of two AcAc isomers display an energetical preference to hydration. Keto-diol is the dominant products to accumulate at the air-droplet interface, and excessive keto-diol can enter the droplet interior to engage in the oligomerization. The photooxidation reaction of AcAc will increase the acidity of the air-droplet interface, which indirectly facilitate the uptake and formation of more keto-diol. Our results provide an insight into the heterogeneous chemistry of β-diketones and their influence on the environment.
Collapse
Affiliation(s)
- Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiyong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiuju Shi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohui Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziqi Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Chattopadhyay A, Bedjanian Y, Romanias MN, Eleftheriou AD, Melissas VS, Papadimitriou VC, Burkholder JB. OH Radical and Chlorine Atom Kinetics of Substituted Aromatic Compounds: 4-chlorobenzotrifluoride ( p-ClC 6H 4CF 3). J Phys Chem A 2022; 126:5407-5419. [PMID: 35943137 DOI: 10.1021/acs.jpca.2c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms for the OH radical and Cl atom gas-phase reaction kinetics of substituted aromatic compounds remain a topic of atmospheric and combustion chemistry research. 4-Chlorobenzotrifluoride (p-chlorobenzotrifluoride, p-ClC6H4CF3, PCBTF) is a commonly used substituted aromatic volatile organic compound (VOC) in solvent-based coatings. As such, PCBTF is classified as a volatile chemical product (VCP) whose release into the atmosphere potentially impacts air quality. In this study, rate coefficients, k1, for the OH + PCBTF reaction were measured over the temperature ranges 275-340 and 385-940 K using low-pressure discharge flow-tube reactors coupled with a mass spectrometer detector in the ICARE/CNRS (Orléans, France) laboratory. k1(298-353 K) was also measured using a relative rate method in the thermally regulated atmospheric simulation chamber (THALAMOS; Douai, France). k1(T) displayed a non-Arrhenius temperature dependence with a negative temperature dependence between 275 and 385 K given by k1(275-385 K) = (1.50 ± 0.15) × 10-14 exp((705 ± 30)/T) cm3 molecule-1 s-1, where k1(298 K) = (1.63 ± 0.03) × 10-13 cm3 molecule-1 s-1 and a positive temperature dependence at elevated temperatures given by k1(470-950 K) = (5.42 ± 0.40) × 10-12 exp(-(2507 ± 45) /T) cm3 molecule-1 s-1. The present k1(298 K) results are in reasonable agreement with two previous 296 K (760 Torr, syn. air) relative rate measurements. The rate coefficient for the Cl-atom + PCBTF reaction, k2, was also measured in THALAMOS using a relative rate technique that yielded k2(298 K) = (7.8 ± 2) × 10-16 cm3 molecule-1 s-1. As part of this work, the UV and infrared absorption spectra of PCBTF were measured (NOAA; Boulder, CO, USA). On the basis of the UV absorption spectrum, the atmospheric instantaneous UV photolysis lifetime of PCBTF (ground level, midlatitude, Summer) was estimated to be 3-4 days, assuming a unit photolysis quantum yield. The non-Arrhenius behavior of the OH + PCBTF reaction over the temperature range 275 to 950 K is interpreted using a mechanism for the formation of an OH-PCBTF adduct and its thermochemical stability. The results from this study are included in a discussion of the OH radical and Cl atom kinetics of halogen substituted aromatic compounds for which only limited temperature-dependent kinetic data are available.
Collapse
Affiliation(s)
- Aparajeo Chattopadhyay
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071 Orléans Cedex 2, France
| | - Manolis N Romanias
- Center for Energy and Environment, Institut Mines-Télécom Nord Europe, Université Lille, F-59000 Lille, France
| | - Angeliki D Eleftheriou
- Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | | - Vassileios C Papadimitriou
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States.,Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - James B Burkholder
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States
| |
Collapse
|
3
|
Chen L, Huang Y, Xue Y, Jia Z, Wang W. Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. J Phys Chem A 2022; 126:2976-2988. [PMID: 35536543 DOI: 10.1021/acs.jpca.2c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl butyl ketone (MBK, 2-hexanone) is a common atmospheric oxygenated volatile organic compound (OVOC) owing to broad industrial applications, but its atmospheric oxidation mechanism remains poorly understood. Herein, the detailed mechanisms and kinetic properties of MBK oxidation initiated by OH radicals and subsequent transformation of the resulting intermediates are performed by employing quantum chemical and kinetic modeling methods. The calculations show that H-abstraction at the C4 position of MBK is more favorable than those at the other positions, with the total rate coefficient of k(T) = 4.13 × 10-14 exp(1576/T) cm3 molecule-1 s-1 at 273-400 K. The dominant pathway of unimolecular degradation of the C-centered alkyl radical is 1,2-acyl group migration. For the isomerization of the peroxy radical RO2, 1,5- and 1,6-H shifts are more favorable than 1,3- and 1,4-H shifts. The multiconformer rate coefficient kMC-TST of the first H-shift of the RO2 radical is estimated to be 1.40 × 10-3 s-1 at room temperature. Compared to the H-shifts of analogous aliphatic RO2 radicals, it can be concluded that the carbonyl group enhances the H-shift rates by as much as 2-4 orders of magnitude. The rate coefficients of the RO2 radical reaction with the HO2 radical exhibit a weakly negative temperature dependence, and the pseudo-first-order rate constant k'HO2 = kHO2[HO2] is calculated to be 3.32-22.10 × 10-3 s-1 at ambient temperature. The bimolecular reaction of the RO2 radical with NO leads to the formation of 3-oxo-butanal as the main product with the formation concentration of 2.2-7.4 μg/m3 in urban areas. The predicted pseudo-first-order rate constant k'NO = kNO[NO] is 2.20-9.98 s-1 at room temperature. By comparing the kMC-TST, k'HO2, and k'NO, it can be concluded that reaction with NO is the dominant removal pathway for the RO2 radical formed from the OH-initiated oxidation of MBK. These findings are expected to deepen our understanding of the photochemical oxidation of ketones under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yonggang Xue
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhihui Jia
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
4
|
Allani A, Bedjanian Y, Papanastasiou DK, Romanias MN. Reaction Rate Coefficient of OH Radicals with d 9-Butanol as a Function of Temperature. ACS OMEGA 2021; 6:18123-18134. [PMID: 34308045 PMCID: PMC8296604 DOI: 10.1021/acsomega.1c01942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
d 9-Butanol or 1-butan-d 9-ol (D9B) is often used as an OH radical tracer in atmospheric chemistry studies to determine OH exposure, a useful universal metric that describes the extent of OH radical oxidation chemistry. Despite its frequent application, there is only one study that reports the rate coefficient of D9B with OH radicals, k 1(295 K), which limits its usefulness as an OH tracer for studying processes at temperatures lower or higher than room temperature. In this study, two complementary experimental techniques were used to measure the rate coefficient of D9B with OH radicals, k 1(T), at temperatures between 240 and 750 K and at pressures within 2-760 Torr. A thermally regulated atmospheric simulation chamber was used to determine k 1(T) in the temperature range of 263-353 K and at atmospheric pressure using the relative rate method. A low-pressure (2-10 Torr) discharge flow tube reactor coupled with a mass spectrometer was used to measure k 1(T) at temperatures within 240-750 K, using both the absolute and relative rate methods. The agreement between the two experimental aproaches followed in this study was very good, within 6%, in the overlapping temperature range, and k 1(295 ± 3 K) was 3.42 ± 0.26 × 10-12 cm3 molecule-1 s-1, where the quoted error is the overall uncertainty of the measurements. The temperature dependence of the rate coefficient is well described by the modified Arrhenius expression, k 1 = (1.57 ± 0.88) × 10-14 × (T/293)4.60±0.4 × exp(1606 ± 164/T) cm3 molecule-1 s-1 in the range of 240-750 K, where the quoted error represents the 2σ standard deviation of the fit. The results of the current study enable an accurate estimation of OH exposure in atmospheric simulation experiments and expand the applicability of D9B as an OH radical tracer at temperatures other than room temperature.
Collapse
Affiliation(s)
- Amira Allani
- IMT
Lille Douai, Univ. Lille, SAGE, Lille F-59000, France
| | - Yuri Bedjanian
- Institut
de Combustion, Aérothermique, Réactivité et Environnement
(ICARE), CNRS, Orléans Cedex
2 45071, France
| | | | | |
Collapse
|
5
|
Bedjanian Y. Rate Constant of the Reaction of OH Radicals with HBr over the Temperature Range 235-960 K. J Phys Chem A 2021; 125:1754-1759. [PMID: 33605732 DOI: 10.1021/acs.jpca.1c00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of the reaction of hydroxyl radicals with HBr, important in atmospheric and combustion chemistry, has been studied in a discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer in the temperature range 235-960 K. The rate constant of the reaction OH + HBr → H2O + Br (1) was determined using both a relative rate method (using the reaction of OH with Br2 as a reference) and absolute measurements, monitoring the kinetics of OH consumption under pseudo-first-order conditions in excess of HBr. The observed U-shaped temperature dependence of k1 is well represented by the sum of two exponential functions: k1 = 2.53 × 10-11 exp(-364/T) + 2.79 × 10-13 exp(784/T) cm3 molecule-1 s-1 (with an estimated conservative uncertainty of 15% at all temperatures). This expression for k1, recommended for T = 240-960 K, combined with that from previous low temperature studies, k1 = 1.06 × 10-11 (T/298)-0.9 cm3 molecule-1 s-1 at T = 23-240 K, allows to describe the temperature behavior of the rate constant over an extended temperature range 23-960 K. The current direct measurements of k1 at temperatures above 460 K, the only ones to date, provide an experimental dataset for use in combustion and volcanic plume modeling and an experimental basis to test theoretical calculations.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071, Orléans Cedex 2, France
| |
Collapse
|
6
|
Zhang X, Sangwan M, Yan C, Koshlyakov PV, Chesnokov EN, Bedjanian Y, Krasnoperov LN. Disproportionation Channel of the Self-reaction of Hydroxyl Radical, OH + OH → H 2O + O, Revisited. J Phys Chem A 2020; 124:3993-4005. [PMID: 32396004 DOI: 10.1021/acs.jpca.0c00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The rate constant of the disproportionation channel 1a of the self-reaction of hydroxyl radicals OH + OH → H2O + O (1a) was measured at ambient temperature as well as over an extended temperature range to resolve the discrepancy between the IUPAC recommended value (k1a = 1.48 × 10-12 cm3 molecule-1 s-1, discharge flow system, Bedjanian et al. J. Phys. Chem. A 1999, 103, 7017) and a factor of ca. 1.8 higher value by pulsed laser photolysis (2.7 × 10-12 cm3 molecule-1 s-1, Bahng et al. J. Phys. Chem. A 2007, 111, 3850, and 2.52 × 10-12 cm3 molecule-1 s-1, Altinay et al. J. Phys. Chem. A 2014, 118, 38). To resolve this discrepancy, the rate constant of the title reaction was remeasured in three laboratories using two different experimental techniques, namely, laser-pulsed photolysis-transient UV absorption and fast discharge flow system coupled with mass spectrometry. Two different precursors were used to generate OH radicals in the laser-pulsed photolysis experiments. The experiments confirmed the low value of the rate constant at ambient temperature (k1a = (1.4 ± 0.2) × 10-12 cm3 molecule-1 s-1 at 295 K) as well as the V-shaped temperature dependence, negative at low temperatures and positive at high temperatures, with a turning point at 427 K: k1a = 8.38 × 10-14 × (T/300)1.99 × exp(855/T) cm3 molecule-1 s-1 (220-950 K). Recommended expression over the 220-2384 K temperature range: k1a = 2.68 × 10-14 × (T/300)2.75 × exp(1165/T) cm3 molecule-1 s-1 (220-2384 K).
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Manuvesh Sangwan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Chao Yan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Pavel V Koshlyakov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgeni N Chesnokov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, Orléans 45071, Cedex 2, France
| | - Lev N Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| |
Collapse
|
7
|
Bedjanian Y. Temperature-Dependent Kinetic Study of the Reaction of Hydroxyl Radicals with Hydroxyacetone. J Phys Chem A 2020; 124:2863-2870. [PMID: 32172569 DOI: 10.1021/acs.jpca.0c00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics of the reaction of OH radicals with hydroxyacetone has been investigated as a function of temperature at a total pressure of helium of 2.0-2.1 Torr and over an extended temperature range of T = 250-830 K and as a function of pressure at T = 301 K in the pressure range 1.0-10.4 Torr. The rate constant of the reaction OH + CH3C(O)CH2OH → products (1) was measured using both absolute (from the kinetics of OH consumption in excess of hydroxyacetone) and relative rate methods (k1 = 4.7 × 10-22 × T3.25 exp (1410/T) cm3 molecule-1 s-1 at T = 250-830 K). The present data combined with selected previous temperature-dependent studies of reaction (1) yield k1 = 4.4 × 10-20 × T2.63 exp (1110/T) cm3 molecule-1 s-1, which is recommended from the present work at T = 230-830 K (with conservative uncertainty of 20% at all temperatures). k1 was found to be independent of the pressure in the range from 1.0 to 10.4 Torr of He at T = 301 K. The present results are compared with previous experimental and theoretical data.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| |
Collapse
|