1
|
Medvedkov IA, Nikolayev AA, He C, Yang Z, Mebel AM, Kaiser RI. One Collision-Two Substituents: Gas-Phase Preparation of Xylenes under Single-Collision Conditions. Angew Chem Int Ed Engl 2023:e202315147. [PMID: 38072833 DOI: 10.1002/anie.202315147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/21/2023]
Abstract
The fundamental reaction pathways to the simplest dialkylsubstituted aromatics-xylenes (C6 H4 (CH3 )2 )-in high-temperature combustion flames and in low-temperature extraterrestrial environments are still unknown, but critical to understand the chemistry and molecular mass growth processes in these extreme environments. Exploiting crossed molecular beam experiments augmented by state-of-the-art electronic structure and statistical calculations, this study uncovers a previously elusive, facile gas-phase synthesis of xylenes through an isomer-selective reaction of 1-propynyl (methylethynyl, CH3 CC) with 2-methyl-1,3-butadiene (isoprene, C5 H8 ). The reaction dynamics are driven by a barrierless addition of the radical to the diene moiety of 2-methyl-1,3-butadiene followed by extensive isomerization (hydrogen shifts, cyclization) prior to unimolecular decomposition accompanied by aromatization via atomic hydrogen loss. This overall exoergic reaction affords a preparation of xylenes not only in high-temperature environments such as in combustion flames and around circumstellar envelopes of carbon-rich Asymptotic Giant Branch (AGB) stars, but also in low-temperature cold molecular clouds (10 K) and in hydrocarbon-rich atmospheres of planets and their moons such as Triton and Titan. Our study established a hitherto unknown gas-phase route to xylenes and potentially more complex, disubstituted benzenes via a single collision event highlighting the significance of an alkyl-substituted ethynyl-mediated preparation of aromatic molecules in our Universe.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | | | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
2
|
Wei W, Jiao L, Li W, Tang X, Xie W, Yu H, Li W, Lei F. Removal of high-molecular-weight hexose alkaline degradation products by rosin-based anion adsorbent: Kinetics, thermodynamics, and mechanisms. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Preitschopf T, Hirsch F, Lemmens AK, Rijs AM, Fischer I. The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Phys Chem Chem Phys 2022; 24:7682-7690. [PMID: 35302151 DOI: 10.1039/d2cp00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or para-xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of ab initio DFT computations. Several reaction products differ by one or more methyl groups, suggesting that molecular growth is dominated by (de)methylation in the reactor.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander K Lemmens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
4
|
Ross SD, Flores J, Khani S, Hewett DM, Reilly NJ. Optical Identification of the Resonance-Stabilized para-Ethynylbenzyl Radical. J Phys Chem A 2021; 125:9115-9127. [PMID: 34614356 DOI: 10.1021/acs.jpca.1c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the spectroscopic observation of the jet-cooled para-ethynylbenzyl (PEB) radical, a resonance-stabilized isomer of C9H7. The radical was produced in a discharge of p-ethynyltoluene diluted in argon and probed by resonant two-color two-photon ionization (R2C2PI) spectroscopy. The origin of the D0(2B1)-D1(2B1) transition of PEB appears at 19,506 cm-1. A resonant two-color ion-yield scan reveals an adiabatic ionization energy (AIE) of 7.177(1) eV, which is almost symmetrically bracketed by CBS-QB3 and B3LYP/6-311G++(d,p) calculations. The electronic spectrum exhibits pervasive Fermi resonances, in that most a1 fundamentals are accompanied by similarly intense overtones or combination bands of non-totally symmetric modes that would carry little intensity in the harmonic approximation. Under the same experimental conditions, the m/z = 115 R2C2PI spectrum of the p-ethynyltoluene discharge also exhibits contributions from the m-ethynylbenzyl and 1-phenylpropargyl radicals. The former, like PEB, is observed herein for the first time, and its identity is confirmed by measurement and calculation of its AIE and D0-D1 origin transition energy; the latter is identified by comparison with its known electronic spectrum (J. Am. Chem. Soc., 2008, 130, 3137-3142). Both species are found to co-exist with PEB at levels vastly greater than might be explained by any precursor sample impurity, implying that interconversion of ethynylbenzyl motifs is feasible in energetic environments such as plasmas and flames, wherein resonance-stabilized radicals are persistent.
Collapse
Affiliation(s)
- Sederra D Ross
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Jonathan Flores
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Sima Khani
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Daniel M Hewett
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Neil J Reilly
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
5
|
Absorption cross-section measurements of ortho-xylyl radical in the 460.1–475.1 nm region and investigation of its temperature and pressure dependence using cavity ringdown spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hirsch F, Pachner K, Fischer I, Issler K, Petersen J, Mitric R, Bakels S, Rijs AM. Do Xylylenes Isomerize in Pyrolysis? Chemphyschem 2020; 21:1515-1518. [PMID: 32501625 PMCID: PMC7496364 DOI: 10.1002/cphc.202000317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Indexed: 01/06/2023]
Abstract
We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength for all molecules were carried out and provde an explanation for the observation of the isomerization products.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kai Pachner
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingo Fischer
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kevin Issler
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jens Petersen
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Roland Mitric
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| |
Collapse
|