1
|
Lease N, Cawkwell MJ, Spielvogel KD, Manner VW. Understanding Trigger Linkage Dynamics in Energetic Materials Using Mixed Picramide Nitrate Ester Explosives. J Phys Chem Lett 2025; 16:579-586. [PMID: 39772598 PMCID: PMC11744797 DOI: 10.1021/acs.jpclett.4c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
The ability to predict the handling sensitivity of new organic energetic materials has been a longstanding goal. We report the synthesis and characterization of six new nitropicramide energetic materials with mixed functional groups that mimic known explosives such as nitroglycerin, erythritol tetranitrate (ETN), and pentaerythritol tetranitrate (PETN). The molecules have been studied theoretically using quantum molecular dynamics (QMD) simulations and density functional theory (DFT) calculations to identify the weakest bond in the reactants - the trigger-linkages - which control handling sensitivity, and to quantify their specific enthalpies of explosion. In good accord with the drop weight impact sensitivity data, our calculations predict that the sensitivities of the molecules are very similar owing to the small variations of the energy output and rates of trigger linkage rupture. In addition, both the QMD and DFT calculations point to the nitropicramide N-NO2 bonds as the trigger linkages rather than the more typical O-NO2 bonds. We propose that the switch of the trigger linkage from the nitrate esters to the nitramine groups arises from the strongly electron withdrawing character of the adjacent trinitrobenzene groups.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - M. J. Cawkwell
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kyle D. Spielvogel
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
2
|
Manner VW, Cawkwell MJ, Spielvogel KD, Tasker DG, Rose JW, Aloi M, Tucker R, Moore JD, Campbell MC, Aslam TD. An Integrated Experimental and Modeling Approach for Assessing High-Temperature Decomposition Kinetics of Explosives. J Am Chem Soc 2024; 146:26286-26296. [PMID: 39259775 PMCID: PMC11440486 DOI: 10.1021/jacs.4c08424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
We present a new integrated experimental and modeling effort that assesses the intrinsic sensitivity of energetic materials based on their reaction rates. The High Explosive Initiation Time (HEIT) experiment has been developed to provide a rapid assessment of the high-temperature reaction kinetics for the chemical decomposition of explosive materials. This effort is supported theoretically by quantum molecular dynamics (QMD) simulations that depict how different explosives can have vastly different adiabatic induction times at the same temperature. In this work, the ranking of explosive initiation properties between the HEIT experiment and QMD simulations is identical for six different energetic materials, even though they contain a variety of functional groups. We have also determined that the Arrhenius kinetics obtained by QMD simulations for homogeneous explosions connect remarkably well with those obtained from much longer duration one-dimensional time-to-explosion (ODTX) measurements. Kinetic Monte Carlo simulations have been developed to model the coupled heat transport and chemistry of the HEIT experiment to explicitly connect the experimental results with the Arrhenius rates for homogeneous explosions. These results confirm that ignition in the HEIT experiment is heterogeneous, where reactions start at the needle wall and propagate inward at a rate controlled by the thermal diffusivity and energy release. Overall, this work provides the first cohesive experimental and first-principles modeling effort to assess reaction kinetics of explosive chemical decomposition in the subshock regime and will be useful in predictive models needed for safety assessments.
Collapse
Affiliation(s)
- Virginia W Manner
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marc J Cawkwell
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kyle D Spielvogel
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Douglas G Tasker
- Detonation Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John W Rose
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael Aloi
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Robert Tucker
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeremiah D Moore
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maria C Campbell
- High Explosives Science & Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tariq D Aslam
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Yuan WS, Hong D, Luo YX, Li XH, Liu FS, Liu ZT, Liu QJ. Pressure and temperature effects on the Raman spectra of LLM-105. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123170. [PMID: 37517265 DOI: 10.1016/j.saa.2023.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Currently, only one crystal structure of LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) (P21/n) has been discovered, and there are still debates on its phase transition point and phase diagram. Based on previous work, we performed crystal structure, Raman spectra, and vibrational properties calculations on LLM-105 crystal. Our results indicate that the crystal structure of LLM-105 remains stable until compressed to 49 GPa, beyond which it may undergo two phase transitions at pressure intervals of 49.0-49.1 GPa and 51.4-51.5 GPa, respectively. Analysis of Raman shift results suggests that these two phase transitions may be reversible, with an intermediate phase possibly acting as a transition phase. Additionally, based on the quasi-harmonic approximation, we fitted the experimental data of LLM-105 lattice expansion state, obtaining the volume at zero pressure and using it for Raman spectra calculations. The results demonstrated the accuracy of this quasi-harmonic approximation method in describing the redshift of Raman peaks during the heating process and the excitation ratio of Raman peaks in different wavenumber ranges.
Collapse
Affiliation(s)
- Wen-Shuo Yuan
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Dan Hong
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China; School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Liutai Avenue 1166, Chengdu 611137, China.
| | - Ying-Xi Luo
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xing-Han Li
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Fu-Sheng Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Qi-Jun Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
4
|
Yang X, Li N, Li Y, Pang S. Insensitive High-Energy Density Materials Based on Azazole-Rich Rings: 1,2,4-Triazole N-Oxide Derivatives Containing Isomerized Nitro and Amino Groups. Int J Mol Sci 2023; 24:3918. [PMID: 36835326 PMCID: PMC9962610 DOI: 10.3390/ijms24043918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
It is an arduous and meaningful challenge to design and develop new energetic materials with lower sensitivity and higher energy. How to skillfully combine the characteristics of low sensitivity and high energy is the key problem in designing new insensitive high-energy materials. Taking a triazole ring as a framework, a strategy of N-oxide derivatives containing isomerized nitro and amino groups was proposed to answer this question. Based on this strategy, some 1,2,4-triazole N-oxide derivatives (NATNOs) were designed and explored. The electronic structure calculation showed that the stable existence of these triazole derivatives was due to the intramolecular hydrogen bond and other interactions. The impact sensitivity and the dissociation enthalpy of trigger bonds directly indicated that some compounds could exist stably. The crystal densities of all NATNOs were larger than 1.80 g/cm3, which met the requirement of high-energetic materials for crystal density. Some NATNOs (9748 m/s for NATNO, 9841 m/s for NATNO-1, 9818 m/s for NATNO-2, 9906 m/s for NATNO-3, and 9592 m/s for NATNO-4) were potential high detonation velocity energy materials. These study results not only indicate that the NATNOs have relatively stable properties and excellent detonation properties but also prove that the strategy of nitro amino position isomerization coupled with N-oxide is an effective means to develop new energetic materials.
Collapse
Affiliation(s)
- Xinbo Yang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nan Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuchuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Marrs FW, Davis JV, Burch AC, Brown GW, Lease N, Huestis PL, Cawkwell MJ, Manner VW. Chemical Descriptors for a Large-Scale Study on Drop-Weight Impact Sensitivity of High Explosives. J Chem Inf Model 2023; 63:753-769. [PMID: 36695777 PMCID: PMC9930127 DOI: 10.1021/acs.jcim.2c01154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/26/2023]
Abstract
The drop-weight impact test is an experiment that has been used for nearly 80 years to evaluate handling sensitivity of high explosives. Although the results of this test are known to have large statistical uncertainties, it is one of the most common tests due to its accessibility and modest material requirements. In this paper, we compile a large data set of drop-weight impact sensitivity test results (mainly performed at Los Alamos National Laboratory), along with a compendium of molecular and chemical descriptors for the explosives under test. These data consist of over 500 unique explosives, over 1000 repeat tests, and over 100 descriptors, for a total of about 1500 observations. We use random forest methods to estimate a model of explosive handling sensitivity as a function of chemical and molecular properties of the explosives under test. Our model predicts well across a wide range of explosive types, spanning a broad range of explosive performance and sensitivity. We find that properties related to explosive performance, such as heat of explosion, oxygen balance, and functional group, are highly predictive of explosive handling sensitivity. Yet, models that omit many of these properties still perform well. Our results suggest that there is not one or even several factors that explain explosive handling sensitivity, but that there are many complex, interrelated effects at play.
Collapse
Affiliation(s)
- Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Jack V. Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Alexandra C. Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Geoffrey W. Brown
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | | | - Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
6
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
7
|
Huestis PL, Lease N, Freye CE, Huber DL, Brown GW, McDonald DL, Nelson T, Snyder CJ, Manner VW. Radiolytic degradation of dodecane substituted with common energetic functional groups †. RSC Adv 2023; 13:9304-9315. [PMID: 36959879 PMCID: PMC10028498 DOI: 10.1039/d3ra00998j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Explosives exist in and are expected to withstand a variety of harsh environments up to and including ionizing radiation, though little is known about the chemical consequences of exposing explosives to an ionizing radiation field. This study focused on the radiation-induced chemical changes to a variety of common energetic functional groups by utilizing a consistent molecular backbone. Dodecane was substituted with azide, nitro, nitrate ester, and nitramine functional groups and γ-irradiated with 60Co in order to study how the functional group degraded along with what the relative stability to ionizing radiation was. Chemical changes were assessed using a combination of analysis techniques including: nuclear magnetic resonance (NMR) spectroscopy, gas chromatography of both the condensed and gas phases, Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Results revealed that much of the damage to the molecules was on the energetic functional group and often concentrated on the trigger linkage, also known as the weakest bond in the molecule. The general trend from most to least susceptible to radiolytic damage was found to be D–ONO2 → D–N3 → D–NHNO2 → D–NO2. These results also appear to be in line with the relative stability of these functional groups to things such as photolysis, thermolysis, and explosive insults. The relative radiolytic stability of dodecane functionalized with common energetic functional groups was explored with gamma irradiation and probed by various analytical techniques.![]()
Collapse
|
8
|
Lease N, Klamborowski LM, Perriot R, Cawkwell MJ, Manner VW. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters. J Phys Chem Lett 2022; 13:9422-9428. [PMID: 36191261 PMCID: PMC9575148 DOI: 10.1021/acs.jpclett.2c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Energetic materials undergo hundreds of chemical reactions during exothermic runaway, generally beginning with the breaking of the weakest chemical bond, the "trigger linkage." Herein we report the syntheses of a series of pentaerythritol tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are systematically substituted by hydroxyl groups. Because all the PETN derivatives have the same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD) simulations show very similar Arrhenius kinetics for the first reactions. However, handling sensitivity testing conducted using drop weight impact indicates that sensitivity decreases precipitously as nitrate esters are replaced by hydroxyl groups. These experimental results are supported by QMD simulations that show systematic decreases in the final temperatures of the products and the energy release as the nitrate ester functional groups are removed. To better interpret these results, we derive a simple model based only on the specific enthalpy of explosion and the kinetics of trigger linkage rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups are removed.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Lisa M. Klamborowski
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Romain Perriot
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Marc J. Cawkwell
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
9
|
Nelson T, Huestis PL, Manner VW. Modeling Photolytic Decomposition of Energetically Functionalized Dodecanes. J Phys Chem A 2022; 126:7094-7101. [PMID: 36196028 PMCID: PMC9574918 DOI: 10.1021/acs.jpca.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
The photolytic stability of explosives and energetic functional groups is of importance for those who regularly handle or are exposed to explosives in typical environmental conditions. This study models the photolytic degradation of dodecane substituted with various energetic functional groups: azide, nitro, nitrate ester, and nitramine. For the studied molecules, it was found that excitons localize on the energetic functional group, no matter where they were initially formed, and thus, the predominant degradation pathway involves the degradation of the energetic functional group. The relative trends for both 4 and 8 eV excitation energies followed with what is expected from the relative stability of the energetic functional groups to thermal and sub-shock degradation. The one notable exception was the azide functional group; more work should be done to further understand the photolytic effects on the azide functional group.
Collapse
Affiliation(s)
- Tammie Nelson
- Physics
and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patricia L. Huestis
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Cawkwell MJ, Davis J, Lease N, Marrs FW, Burch A, Ferreira S, Manner VW. Understanding Explosive Sensitivity with Effective Trigger Linkage Kinetics. ACS PHYSICAL CHEMISTRY AU 2022; 2:448-458. [PMID: 36855691 PMCID: PMC9955191 DOI: 10.1021/acsphyschemau.2c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a simple linear model for ranking the drop weight impact sensitivity of organic explosives that is based explicitly on chemical kinetics. The model is parameterized to specific heats of explosion, Q, and Arrhenius kinetics for the onset of chemical reactions that are obtained from gas-phase Born-Oppenheimer molecular dynamics simulations for a chemically diverse set of 24 molecules. Reactive molecular dynamics simulations sample all possible decomposition pathways of the molecules with the appropriate probabilities to provide an effective reaction barrier. In addition, the calculations of effective trigger linkage kinetics can be accomplished without prior physical intuition of the most likely decomposition pathways. We found that the specific heat of explosion tends to reduce the effective barrier for decomposition in accordance with the Bell-Evans-Polanyi principle, which accounts naturally for the well-known correlations between explosive performance and sensitivity. Our model indicates that sensitive explosives derive their properties from a combination of weak trigger linkages that react at relatively low temperatures and large specific heats of explosion that further reduce the effective activation energy.
Collapse
Affiliation(s)
- Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jack Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexandra Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Suyana Ferreira
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
11
|
Shreeve JM, Lal S, Gao H. Design and Computational Insight on Two Novel CL-20 Analogues, BNMTNIW and BNIMTNIW: High Performance Energetic Materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj02838g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a theoretical Insight into two newly designed novel CL-20-based high performance energetic compounds, namely bis(nitromethyl)-tetranitrohexaaza-isowurtzitane (BNMTNIW) and bis(nitratomethyl)-tetranitrohexaaza-isowurtzitane BNIMTNIW), is reported. The title compounds are expected to...
Collapse
|
12
|
First-principles calculations of the electronic, vibrational, and thermodynamic properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lease N, Holmes MD, Englert-Erickson MA, Kay LM, Francois EG, Manner VW. Analysis of Ignition Sites for the Explosives 3,3'-Diamino-4,4'-azoxyfurazan (DAAF) and 1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane (HMX) Using Crush Gun Impact Testing. ACS MATERIALS AU 2021; 1:116-129. [PMID: 36855395 PMCID: PMC9888612 DOI: 10.1021/acsmaterialsau.1c00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The handling safety characteristics of energetic materials must be measured in order to ensure the safe transport and use of explosives. Drop-weight impact sensitivity measurements are one of the first standardized tests performed for energetics. They utilize a small amount of the explosive sample and a standard weight, which is dropped on the material from various heights to determine its sensitivity. While multiple laboratories have used the impact sensitivity test as an initial screening tool for explosive sensitivity for the past 60 years, variability exists due to the use of different instruments, different methods to determine the initiation, and the scatter commonly associated with less-sensitive explosives. For example, standard explosives such as 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX) initiate reliably and consistently on the drop-weight impact test, whereas insensitive explosives such as 3,3'-diamino-4,4'-azoxyfurazan (DAAF) exhibit variability in sound levels and the expended material. Herein we investigate the impact sensitivity of DAAF and HMX along with a more detailed investigation of ignition sites using a novel "crush gun" apparatus: a pneumatically powered drop-weight tower with advanced diagnostics, including high-speed visual and infrared cameras. Using this crush gun assembly, the ignition sites in HMX and DAAF were analyzed with respect to the effects of particle size and the presence of a source of grit. The formation of ignition sites was observed in both explosives; however, only HMX showed ignition sites that propagated to a deflagration at lower firing speeds. Finally, the presence of grit particles was shown to increase the occurrence of ignition sites in DAAF at lower firing speeds, though propagation to a full reaction was not observed on the time scale of the test. These results enable a better understanding of how ignition and propagation occurs during the impact testing of DAAF.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Matthew D. Holmes
- Explosive
Applications and Special Projects, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael A. Englert-Erickson
- Explosive
Applications and Special Projects, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lisa M. Kay
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elizabeth G. Francois
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
14
|
Cawkwell MJ, Burch AC, Ferreira SR, Lease N, Manner VW. Atom Equivalent Energies for the Rapid Estimation of the Heat of Formation of Explosive Molecules from Density Functional Tight Binding Theory. J Chem Inf Model 2021; 61:3337-3347. [PMID: 34252276 DOI: 10.1021/acs.jcim.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atom equivalent energies have been derived from which the gas-phase heat of formation of explosive molecules can be estimated from fast, semiempirical density functional tight binding total energy calculations. The root-mean-square deviation and maximum deviation of the heats of formation from the experimental values for the set of 45 energetic molecules compiled by Byrd and Rice [ J. Phys. Chem. A, 2006, 110, 1005-1013] are 10.4 and 25.5 kcal/mol, respectively, using 4 atom equivalent energies and 7.4 and 15.0 kcal/mol, respectively, using 7 atom equivalent energies. These errors are around a factor of 2-3 larger than those obtained from density functional theory calculations but are smaller than those obtained from other semiempirical electronic structure methods. Heats of formation calculated with density functional tight binding theory using the 4 and 7 atom equivalent energies, the Byrd and Rice scheme, and the atom pair contribution method for a new set of 531 energetic molecules that contain only carbon, hydrogen, nitrogen, and oxygen are provided.
Collapse
Affiliation(s)
- Marc J Cawkwell
- Los Alamos National Laboratory, Mail Stop B221 Los Alamos, New Mexico 87545, United States
| | - Alexandra C Burch
- Los Alamos National Laboratory, Mail Stop B221 Los Alamos, New Mexico 87545, United States
| | - Suyana R Ferreira
- Los Alamos National Laboratory, Mail Stop B221 Los Alamos, New Mexico 87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Mail Stop B221 Los Alamos, New Mexico 87545, United States
| | - Virginia W Manner
- Los Alamos National Laboratory, Mail Stop B221 Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Marrs FW, Manner VW, Burch AC, Yeager JD, Brown GW, Kay LM, Buckley RT, Anderson-Cook CM, Cawkwell MJ. Sources of Variation in Drop-Weight Impact Sensitivity Testing of the Explosive Pentaerythritol Tetranitrate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexandra C. Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John D. Yeager
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Geoffrey W. Brown
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lisa M. Kay
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Reid T. Buckley
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. A Quantum-Based Approach to Predict Primary Radiation Damage in Polymeric Networks. J Chem Theory Comput 2021; 17:463-473. [PMID: 33272015 DOI: 10.1021/acs.jctc.0c00967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Initial atomistic-level radiation damage in chemically reactive materials is thought to induce reaction cascades that can result in undesirable degradation of macroscale properties. Ensembles of quantum-based molecular dynamics (QMD) simulations can accurately predict these cascades, but extracting chemical insights from the many underlying trajectories is a labor-intensive process that can require substantial a priori intuition. We develop here a general and automated graph-based approach to extract all chemically distinct structures sampled in QMD simulations and apply our approach to predict primary radiation damage of polydimethylsiloxane (PDMS), the main constituent of silicones. A postprocessing protocol is developed to identify underlying polymer backbone structures as connected components in QMD trajectories. These backbones form a repository of radiation-damaged structures. A scheme for extracting and updating a library of isomorphically distinct structures is proposed to identify the spanning set and aid chemical interpretation of the repository. The analyses are applied to ensembles of cascade QMD simulations in which the four element types in PDMS are selectively excited in primary knock-on atom events. Our approach reveals a much higher degree of combinatorial complexity in this system than was inferred through radiolysis experiments. Probabilities are extracted for radiation-induced network changes including formation of branch points, carbon linkages, cycles, bond scissions, and carbon uptake into the Si-O siloxane backbone network. The general analysis framework presented here is readily extendable to modeling chemical degradation of other polymers and molecular materials and provides a basis for future quantum-informed multiscale modeling of radiation damage.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
17
|
Sakano MN, Hamed A, Kober EM, Grilli N, Hamilton BW, Islam MM, Koslowski M, Strachan A. Unsupervised Learning-Based Multiscale Model of Thermochemistry in 1,3,5-Trinitro-1,3,5-triazinane (RDX). J Phys Chem A 2020; 124:9141-9155. [PMID: 33112131 DOI: 10.1021/acs.jpca.0c07320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael N. Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ahmed Hamed
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Edward M. Kober
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicolo Grilli
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, United Kingdom
| | - Brenden W. Hamilton
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Marisol Koslowski
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Rice BM, Mattson WD, Larentzos JP, Byrd EFC. Heuristics for chemical species identification in dense systems. J Chem Phys 2020; 153:064102. [DOI: 10.1063/5.0015664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Betsy M. Rice
- US Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - William D. Mattson
- US Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - James P. Larentzos
- US Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - Edward F. C. Byrd
- US Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| |
Collapse
|
19
|
Perriot R, Cawkwell MJ, Martinez E, McGrane SD. Reaction Rates in Nitromethane under High Pressure from Density Functional Tight Binding Molecular Dynamics Simulations. J Phys Chem A 2020; 124:3314-3328. [DOI: 10.1021/acs.jpca.9b11897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romain Perriot
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - M. J. Cawkwell
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Martinez
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn D. McGrane
- Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|