1
|
Thesing LV, Yachmenev A, González-Férez R, Küpper J. Molecular influence on nuclear-quadrupole-coupling effects in laser induced alignment. J Chem Phys 2024; 161:124115. [PMID: 39329310 DOI: 10.1063/5.0231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
We computationally studied the effect of nuclear-quadrupole interactions on the field-free impulsive alignment of different asymmetric-top molecules. Our analysis is focused on the influence of the hyperfine- and rotational-energy-level structures. These depend on the number of nuclear spins, the rotational constants, and the symmetry of the tensors involved in the nuclear spin and external field interactions. Comparing the prototypical large-nuclear-spin molecules iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, and 2,5-diiodobenzonitrile, we demonstrate that the magnitude of the hyperfine splittings compared to the rotational-energy splittings plays a crucial role in the spin-rotational dynamics after the laser pulse. Moreover, we point out that the impact of the quadrupole coupling on the rotational dynamics decreases when highly excited rotational states dominate the dynamics.
Collapse
Affiliation(s)
- Linda V Thesing
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrey Yachmenev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rosario González-Férez
- Instituto Carlos I de Física Teórica y Computacional and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Chordiya K, Despré V, Nagyillés B, Zeller F, Diveki Z, Kuleff AI, Kahaly MU. Photo-ionization initiated differential ultrafast charge migration: impacts of molecular symmetries and tautomeric forms. Phys Chem Chem Phys 2023; 25:4472-4480. [PMID: 36317562 DOI: 10.1039/d2cp02681c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photo-ionization induced ultrafast electron dynamics is considered as a precursor for the slower nuclear dynamics associated with molecular dissociation. Here, using the ab initio multielectron wave-packet propagation method, we study the overall many-electron dynamics, triggered by ionizing the outer-valence orbitals of different tautomers for a prototype molecule with more than one symmetry element. From the time evolution of the initially created averaged hole density of each system, we identify distinctly different charge dynamics responses in the tautomers. We observe that the keto form shows a charge migration direction away from the nitrogen bonded with hydrogen, while in enol-U - away from oxygen bonded to hydrogen. Additionally, the dynamics following the ionization of molecular orbitals with different symmetries reveals that a' orbitals show a fast and highly delocalized charge density in comparison to a'' symmetry. These observations indicate why different tautomers respond differently to an XUV ionization, and might explain the subsequent different fragmentation pathways. An experimental schematics allowing the detection and reconstruction of such charge dynamics is also proposed. Although the present study uses a simple, prototypical bio-relevant molecule, it reveals the explicit role of molecular symmetry and tautomerism in the ionization-triggered charge migration that controls many ultrafast physical, chemical, and biological processes, making tautomeric forms a promising tool of molecular design for desired charge migration.
Collapse
Affiliation(s)
- Kalyani Chordiya
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | - Victor Despré
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Balázs Nagyillés
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | - Felix Zeller
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Zsolt Diveki
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary.
| | - Alexander I Kuleff
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Mousumi Upadhyay Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| |
Collapse
|
3
|
Qiang J, Zhou L, Lu P, Lin K, Ma Y, Pan S, Lu C, Jiang W, Sun F, Zhang W, Li H, Gong X, Averbukh IS, Prior Y, Schouder CA, Stapelfeldt H, Cherepanov IN, Lemeshko M, Jäger W, Wu J. Femtosecond Rotational Dynamics of D_{2} Molecules in Superfluid Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2022; 128:243201. [PMID: 35776471 DOI: 10.1103/physrevlett.128.243201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.
Collapse
Affiliation(s)
- Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yongzhe Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Fenghao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiam Prior
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Igor N Cherepanov
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
4
|
|
5
|
Nakamura K, Fukahori S, Hasegawa H. Rotational dynamics and transitions between Λ-type doubling of NO induced by an intense two-color laser field. J Chem Phys 2021; 155:174308. [PMID: 34742217 DOI: 10.1063/5.0071516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We numerically investigate the rotational dynamics of NO in the electronic ground X2Π state induced by an intense two-color laser field (10 TW/cm2) as a function of pulse duration (0.3-25 ps). In the short pulse duration of less than 12 ps, rotational Raman excitation is effectively induced and results in molecular orientation. On the contrary, when the pulse duration is longer than 15 ps, the rotational excitation is suppressed. In addition to the rotational excitation, we find that transitions between Λ-type doubling are induced. Significantly, the maximum coherent wave packet between Λ-type doubling in J = 0.5 is generated using the pulse duration of 19.8 ps. The wave packet changes to the eigenstates of Λ = +1 or -1 alternatively, where Λ is the projection of the electronic orbital angular momentum on the N-O axis, which is regarded as the unidirectional rotation of an unpaired 2π electron around the N-O axis in a space-fixed frame as well as in a molecule-fixed frame. The experimental method to observe the alternation of the rotational direction of the electron around the N-O axis is proposed.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinichi Fukahori
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirokazu Hasegawa
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B, Cherepanov IN, Bighin G, Zillich RE, Lemeshko M, Stapelfeldt H. Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains. PHYSICAL REVIEW LETTERS 2020; 125:013001. [PMID: 32678640 DOI: 10.1103/physrevlett.125.013001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 05/20/2023]
Abstract
Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.
Collapse
Affiliation(s)
- Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Anders V Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Benjamin Shepperson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Igor N Cherepanov
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giacomo Bighin
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert E Zillich
- Institute for Theoretical Physics, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|