1
|
Clovis NS, Chaudhury S, Sen P. Synergistic Chloroform-Methanol Binary Solvent Mixture Is Inherently Spatially and Dynamically Heterogeneous. J Phys Chem B 2025. [PMID: 39784330 DOI: 10.1021/acs.jpcb.4c07326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior. The reason is attributed to the unique but diverse interactions present in the system. We speculated that these diverse interactions must manifest heterogeneity in such a binary solvent mixture. Using the improved methodology developed by our group, we investigate the presence of dynamic and spatial heterogeneity in the chloroform/methanol synergistic binary solvent mixture. To our delight, we found that our projection is accurate, and indeed, the chloroform/methanol binary solvent mixtures are heterogeneous. Two maxima for the synergistic behavior have been observed for the chloroform/methanol binary solvent mixture (at ∼0.45 and 0.75 mole fractions of methanol in chloroform) in the literature, where the extent of heterogeneity was also found to be the highest. The present study portrays the intriguing complexity of simple binary solvent mixtures, and the findings may provide valuable insights into solvent engineering for diverse applications like extraction/purification media, reaction media, polymer processing, nanomaterial synthesis, pollutant extraction, active ingredient delivery, biofuel production, and battery technology.
Collapse
Affiliation(s)
- Ndege Simisi Clovis
- Centre for Lasers & Photonics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, B.P. 190, Kinshasa XI, Democratic Republic of Congo
| | - Soumya Chaudhury
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pratik Sen
- Centre for Lasers & Photonics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Mondal J, Maji D, Mitra S, Biswas R. Temperature-Dependent Dielectric Relaxation Measurements of (Betaine + Urea + Water) Deep Eutectic Solvent in Hz-GHz Frequency Window: Microscopic Insights into Constituent Contributions and Relaxation Mechanisms. J Phys Chem B 2024; 128:6567-6580. [PMID: 38949428 DOI: 10.1021/acs.jpcb.4c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A combined experimental and simulation study of dielectric relaxation (DR) of a deep eutectic solvent (DES) composed of betaine, urea, and water with the composition [Betaine:Urea:Water = 11.7:12:1 (weight ratio) and 9:18:5 (molar ratio)] was performed to explore and understand the interaction and dynamics of this system. Temperature-dependent (303 ≤ T/K ≤ 343) measurements were performed over 9 decades of frequency, combining three different measurement setups. Measured DR, comprising four distinct steps with relaxation times spreading over a few picoseconds to several nanoseconds, was found to agree well with simulations. The simulated total DR spectra, upon dissection into three self (intraspecies) and three cross (interspecies) interaction contributions, revealed that the betaine-betaine self-term dominated (∼65%) the relaxation, while the urea-urea and water-water interactions contributed only ∼7% and ∼1%, respectively. The cross-terms (betaine-urea, betaine-water, and urea-water) together accounted for <30% of the total DR. The slowest DR component with a time constant of ∼1-10 ns derived dominant contribution from betaine-betaine interactions, where betaine-water and urea-water interactions also contributed. The subnanosecond (0.1-0.6 ns) time scale originated from all interactions except betaine-water interaction. An extensive interaction of water with betaine and urea severely reduced the average number of water-water H-bonds (∼0.7) and heavily decreased the static dielectric constant of water in this DES (εs ∼ 2). Furthermore, simulated first rank collective single particle reorientational relaxations (C1(t)) and the structural H-bond fluctuation dynamics (CHB (t)) exhibited multiexponential kinetics with time scales that corresponded well with those found both in the simulated and measured DR.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Sudipta Mitra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
3
|
Gupta R, Verma SD. Two-Dimensional Fluctuation Correlation Spectroscopy (2D-FlucCS): A Method to Determine the Origin of Relaxation Rate Dispersion. ACS MEASUREMENT SCIENCE AU 2024; 4:153-162. [PMID: 38645580 PMCID: PMC11027202 DOI: 10.1021/acsmeasuresciau.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/23/2024]
Abstract
Relaxation rate dispersion, i.e., nonexponential or multicomponent kinetics, is observed in complex systems when measuring relaxation kinetics. Often, the origin of rate dispersion is associated with the heterogeneity in the system. However, both homogeneous (where all molecules experience the same rate but inherently nonexponential) and heterogeneous (where all molecules experience different rates) systems can exhibit rate dispersion. A multidimensional correlation analysis method has been demonstrated to detect and quantify rate dispersion observed in molecular rotation, diffusion, solvation, and reaction kinetics. One-dimensional (1D) autocorrelation function detects rate dispersion and measures its extent. Two-dimensional (2D) autocorrelation function measures the origin of rate dispersion and distinguishes homogeneous from heterogeneous. In a heterogeneous system, implicitly there exist subensembles of molecules experiencing different rates. A three-dimensional (3D) autocorrelation function measures subensemble exchange if present and reveals if the system possesses static or dynamic heterogeneity. This perspective discusses the principles, applications, and potential and also presents a future outlook of two-dimensional fluctuation correlation spectroscopy (2D-FlucCS). The method is applicable to any experiment or simulation where a time series of fluctuation in an observable (emission, scattering, current, etc.) around a mean value can be obtained in steady state (equilibrium or nonequilibrium), provided the system is ergodic.
Collapse
Affiliation(s)
- Ruchir Gupta
- Spectroscopy and Dynamics
Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sachin Dev Verma
- Spectroscopy and Dynamics
Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Mondal J, Maji D, Biswas R. Temperature-dependent dielectric relaxation measurements of (acetamide + K/Na SCN) deep eutectic solvents: Decoding the impact of cation identity via computer simulations. J Chem Phys 2024; 160:084506. [PMID: 38421071 DOI: 10.1063/5.0193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
5
|
Tarif E, Das N, Sen P. Does Viscosity Decoupling Guarantee Dynamic Heterogeneity? A Clue through an Excitation and Emission Wavelength-Dependent Time-Resolved Fluorescence Anisotropy Study. J Phys Chem B 2023; 127:7162-7173. [PMID: 37549044 DOI: 10.1021/acs.jpcb.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Traditionally, deviation from Stokes-Einstein-Debye (SED) relation in terms of viscosity dependence of medium dynamics, i.e., τ x ∝ ( η T ) p with p ≠ 1, is taken as a signature of dynamic heterogeneity. However, it does not guarantee medium heterogeneity, as the decoupling may also originate from the deviation of the basic assumption of SED. Here, we developed a method to find a stronger relation between viscosity decoupling (p ≠ 1) and dynamic heterogeneity in terms of rotational motion. Our approach exploited the fact that in heterogeneous media, a solvatochromic probe will be solvated to a different extent at different microdomains (subpopulations), and photoselection of these subpopulations can be achieved by excitation or emission wavelength-dependent measurements. We hypothesized that the dynamics of a homogeneous system might show viscosity decoupling, but the extent of decoupling at different excitations (or at different emissions) should not be different. On the other hand, in a heterogeneous medium, this extent of viscosity decoupling (p-value) should be different at different excitations (or at different emissions). As proof of concept, we investigated three versatile solvent media: squalane (viscous molecular liquid), 1-ethyle-3-methylimidazolium ethyl sulfate ionic liquid (IL), and [0.78 acetamide + 0.22 LiNO3] deep eutectic solvent (DES). We found that squalane is homogeneous, although it shows fractional viscosity dependence (p ≠ 1). Interestingly, mild heterogeneity in IL and significant heterogeneity in the DES were observed. Overall, we conclude that the difference in the p-value as a function of excitation (or emission) wavelength-dependent might be a superior way for the detection of dynamic heterogeneity.
Collapse
Affiliation(s)
- Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
6
|
Maji D, Biswas R. Dielectric relaxation and dielectric decrement in ionic acetamide deep eutectic solvents: Spectral decomposition and comparison with experiments. J Chem Phys 2023; 158:2888209. [PMID: 37139998 DOI: 10.1063/5.0147378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.
Collapse
Affiliation(s)
- Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
7
|
Hossain MI, Adhikari L, Baker GA, Blanchard GJ. Relating the Induced Free Charge Density Gradient in a Room-Temperature Ionic Liquid to Molecular-Scale Organization. J Phys Chem B 2023; 127:1780-1788. [PMID: 36790441 DOI: 10.1021/acs.jpcb.2c07745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report on dilution-dependent changes in the local environments of chromophores incorporated into room-temperature ionic liquid (RTIL)-molecular solvent binary systems where the ionic liquid cation and molecular solvent possess the same alkyl chain length. We have used the RTIL 1-decyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (DMPyrr+TFSI-) and the molecular solvent 1-decanol. Perylene was used as a non-polar probe, and cresyl violet (CV+) was used as a polar probe chromophore. We observe that in both regions there is a change in the chromophore local environments with increasing 1-decanol content. The changes in the nonpolar regions of the binary RTIL-molecular solvent system occur at a lower 1-decanol concentration than changes in the polar regions. Both chromophores reorient as oblate rotors in this binary system, allowing detailed information on the relative values of the Cartesian components of the rotational diffusion constants to be extracted from the experimental data. The induced free charge density gradient, ρf, known to exist in RTILs, persists to high 1-decanol content (1-decanol mole fraction of 0.75), with the structural details of the gradient being reflected in depth-dependent changes in the Cartesian components of the rotational diffusion constants of CV+. This is the first time that changes in molecular organization have been correlated with ρf.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Viscosity decoupling does not guarantee dynamic heterogeneity: A way out. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Assessing the impact of increase in the number of hydroxyl groups on the microscopic behaviors of ammonium-based room temperature ionic liquids: A combined fluorescence up-conversion, fluorescence correlation and NMR spectroscopic study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Water-induced fluorescence turn-on imidazole derivative and its interaction with bovine serum albumin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Banerjee S, Ghorai PK, Maji D, Biswas R. Difference in "Supercooling" Affinity between (Acetamide + Na/KSCN) Deep Eutectics: Reflections in the Simulated Anomalous Motions of the Constituents and Solution Microheterogeneity Features. J Phys Chem B 2022; 126:10146-10155. [PMID: 36414001 DOI: 10.1021/acs.jpcb.2c04994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deep depression of freezing points of ionic amide deep eutectic solvents (DESs) is known to exhibit a significant dependence on the identity of ions present in those systems and the nature of the functional group attached to the host amide. This deep depression of the freezing point is sometimes termed as "supercooling". For (acetamide + electrolyte) DESs, experiments have revealed signatures of ion-dependent spatiotemporal heterogeneity features. The focus of this work is to provide microscopic explanations of these experimentally observed macroscopic system properties in terms of particle jumps and insights about the origin of the cation dependence. For this purpose, extensive molecular dynamics simulations have been performed employing (acetamide + Na/KSCN) deep eutectics as representative ionic systems at 303, 318, 333, and 348 K. The individual translational motions of acetamide and the ions are followed, and their connections to solution heterogeneity are explored. The center-of-mass motion for Na+ has been found to be more anomalous than that for K+. This difference corroborates well with experimental reports on heterogeneous relaxations in these systems. Simulated viscosity coefficients and dynamic heterogeneity features also reflect this difference. Moreover, simulated reorientational relaxations of acetamide molecules in these ionic DESs suggest that a Na+-containing DES is more heterogeneous than the corresponding K+-containing system. Estimated void and neck distributions for acetamide molecules differ as the alkali metal ions differ. In brief, this study provides a detailed microscopic view of the cation dependence of the microheterogeneous relaxation dynamics of these DESs reported repeatedly by different experiments.
Collapse
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Pradip Kr Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dhrubajyoti Maji
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
12
|
Temperature-dependent ultrafast solvation dynamics of choline chloride-based deep eutectic solvent (DES) and hydroxyl functionalized room temperature ionic liquids (RTILs): Exploring the difference in solvent response between DES and RTILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Stephens NM, Smith EA. Structure of Deep Eutectic Solvents (DESs): What We Know, What We Want to Know, and Why We Need to Know It. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14017-14024. [PMID: 36346803 DOI: 10.1021/acs.langmuir.2c02116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
14
|
Size dependence of solute’s translational jump-diffusion in solvent: Relationship between trapping and jump-diffusion. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Why do some reactions possess similar reaction rate in wildly different viscous media? A possible explanation via frequency-dependent friction. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Barik S, Chakraborty M, Mahapatra A, Sarkar M. Choline chloride and ethylene glycol based deep eutectic solvent (DES) versus hydroxyl functionalized room temperature ionic liquids (RTILs): assessing the differences in microscopic behaviour between the DES and RTILs. Phys Chem Chem Phys 2022; 24:7093-7106. [PMID: 35262105 DOI: 10.1039/d1cp05010a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the aim of understanding the differences in the behavior of deep eutectic solvents (DESs) and room temperature ionic liquids (RTILs) in terms of their structure, dynamics, and intra- and intermolecular interactions, three different ILs and one DES having similar functionalities (hydroxyl) have been investigated by using both ensembled average and single-molecule spectroscopic techniques. Specifically, for this purpose, a choline chloride based DES (ethaline) and three hydroxyl functionalized ILs (1-(2-hydroxyethyl)-3-imidazolium bis(trifluoromethanesulfonyl)imide ([OHEMIM][NTF2]), N-(2-hydroxyl ethyl)-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([OHEMPy][NTf2]), and N-(2-hydroxyethyl)-N,N-dimethylpropan-1-aminium bis(trifluoromethanesulfonyl)imide ([OHC3CH][NTf2])) are employed and investigated by EPR, time-resolved fluorescence, NMR and FCS studies. Estimation of polarity through EPR spectroscopy has revealed that the hydroxyl ILs employed in these studies are hyper-polar (close to water) in nature, whereas the polarity of the DES is found to be close to those of aliphatic polyhydroxy-alcohols. Interestingly, both time-resolved fluorescence anisotropy and FCS studies on these systems have suggested that the hydroxyl ILs are more dynamically heterogeneous than the DES. More interestingly, PFG-NMR measurements have indicated that the fluid structure of ethaline is relatively more associated as compared to those of the ILs despite the fact that all the cations have the same hydroxyl functionalities. All these investigations have essentially demonstrated that, despite having similar functionalities, both the DES and hydroxyl ILs employed in the present study exhibit microscopic behaviours that are significantly different from each other, indicating the interplay of various intermolecular interactions within the constituent species in governing the behaviours of these solvent systems.
Collapse
Affiliation(s)
- Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Manjari Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| |
Collapse
|
17
|
Dinda S, Sil A, Das A, Tarif E, Biswas R. Does urea modify microheterogeneous nature of ionic amide deep eutectics? Clues from non-reactive and reactive solute-centered dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Mishra K, Acharjee D, Das A, Ghosh S. Subpicosecond Hot Hole Transfer in a Graphene Quantum Dot Composite with High Efficiency. J Phys Chem Lett 2022; 13:606-613. [PMID: 35019662 DOI: 10.1021/acs.jpclett.1c03530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extraction of hot carriers is of prime importance because of its potential to overcome the energy loss that limits the efficiency of an optoelectronic device. Employing a femtosecond upconversion setup, herein we report a few picoseconds carrier cooling time of colloidal graphene quantum dots (GQDs) is at least an order of magnitude slower compared to that in its bulk form. A slower carrier cooling time of GQDs compared to that of the other semiconductor quantum dots and their bulk materials is indeed a coveted property of GQDs that would allow one easy harvesting of high energy species employing a suitable molecular system as shown in this study. A subpicosecond hot hole transfer time scale has been achieved in a GQD-molecular system composite with high transfer efficiency. Our finding suggests a dramatic enhancement of the efficiency of GQD based optoelectronic devices can possibly be a reality.
Collapse
Affiliation(s)
- Krishna Mishra
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
19
|
Evolution of microscopic heterogeneity and dynamics in choline chloride-based deep eutectic solvents. Nat Commun 2022; 13:219. [PMID: 35017478 PMCID: PMC8752670 DOI: 10.1038/s41467-021-27842-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/17/2021] [Indexed: 01/29/2023] Open
Abstract
Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed. Tailoring the macroscopic properties of deep eutectic solvents requires knowing how these depend on the local structure and microscopic dynamics. The authors, with computational and experimental tools spanning a wide range of space- and timescales, shed light into the relationship between micro and macroscopic properties in glyceline and ethaline.
Collapse
|
20
|
Srinivasan H, Sharma VK, Mitra S. Can the microscopic and macroscopic transport phenomena in deep eutectic solvents be reconciled? Phys Chem Chem Phys 2021; 23:22854-22873. [PMID: 34505589 DOI: 10.1039/d1cp02413b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have become ubiquitous in a variety of industrial and pharmaceutical applications since their discovery. However, the fundamental understanding of their physicochemical properties and their emergence from the microscopic features is still being explored fervently. Particularly, the knowledge of transport mechanisms in DESs is essential to tune their properties, which shall aid in expanding the territory of their applications. This perspective presents the current state of understanding of the bulk/macroscopic transport properties and microscopic relaxation processes in DESs. The dependence of these properties on the components and composition of the DES is explored, highlighting the role of hydrogen bonding (H-bonding) interactions. Modulation of these interactions by water and other additives, and their subsequent effect on the transport mechanisms, is also discussed. Various models (e.g. hole theory, free volume theory, etc.) have been proposed to explain the macroscopic transport phenomena from a microscopic origin. But the formation of H-bond networks and clusters in the DES reveals the insufficiency of these models, and establishes an antecedent for dynamic heterogeneity. Even significantly above the glass transition, the microscopic relaxation processes in DESs are rife with temporal and spatial heterogeneity, which causes a substantial decoupling between the viscosity and microscopic diffusion processes. However, we propose that a thorough understanding of the structural relaxation associated to the H-bond dynamics in DESs will provide the necessary framework to interpret the emergence of bulk transport properties from their microscopic counterparts.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
21
|
|
22
|
Tiecco M, Di Guida I, Gentili PL, Germani R, Bonaccorso C, Cesaretti A. Probing the structural features and the micro-heterogeneity of various deep eutectic solvents and their water dilutions by the photophysical behaviour of two fluorophores. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Rajbangshi J, Mukherjee K, Biswas R. Heterogeneous Orientational Relaxations and Translation–Rotation Decoupling in (Choline Chloride + Urea) Deep Eutectic Solvents: Investigation through Molecular Dynamics Simulations and Dielectric Relaxation Measurements. J Phys Chem B 2021; 125:5920-5936. [DOI: 10.1021/acs.jpcb.1c01501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Juriti Rajbangshi
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Kallol Mukherjee
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| |
Collapse
|
24
|
Das N, Sen P. Dynamic heterogeneity and viscosity decoupling: origin and analytical prediction. Phys Chem Chem Phys 2021; 23:15749-15757. [PMID: 34286756 DOI: 10.1039/d1cp01804c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular-level structure and dynamics decide the functionality of solvent media. Therefore, a significant amount of effort is being dedicated continually over time in understanding their structural and dynamical features. One intriguing aspect of solvent structure and dynamics is heterogeneity. In these systems, the dynamics follow , where p is the measure of viscosity decoupling. We analytically predicted that in such cases, the Stokes-Einstein relationship is modified to due to microdomain formation, and the second term on the right-hand side leads to viscosity decoupling. We validated our prediction by estimating the p values of a few solvents, and they matched well with the literature. Overall, we believe that our approach gives a simple yet unique physical picture to help us understand the heterogeneity of solvent media.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India.
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India.
| |
Collapse
|
25
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
26
|
Gurkan BE, Maginn EJ, Pentzer EB. Deep Eutectic Solvents: A New Class of Versatile Liquids. J Phys Chem B 2020; 124:11313-11315. [PMID: 33327722 DOI: 10.1021/acs.jpcb.0c10099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Burcu E Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University
| |
Collapse
|
27
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 841] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
28
|
Farooq MQ, Abbasi NM, Anderson JL. Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A 2020; 1633:461613. [DOI: 10.1016/j.chroma.2020.461613] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
29
|
Subba N, Das N, Sen P. Partial Viscosity Decoupling of Solute Solvation, Rotation, and Translation Dynamics in Lauric Acid/Menthol Deep Eutectic Solvent: Modulation of Dynamic Heterogeneity with Length Scale. J Phys Chem B 2020; 124:6875-6884. [DOI: 10.1021/acs.jpcb.0c04379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Navin Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|