1
|
Madanchi A, Azek E, Zongo K, Béland LK, Mousseau N, Simine L. Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials. ACS PHYSICAL CHEMISTRY AU 2025; 5:3-16. [PMID: 39867446 PMCID: PMC11758375 DOI: 10.1021/acsphyschemau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique nouveau (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.
Collapse
Affiliation(s)
- Ata Madanchi
- Department
of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Emna Azek
- Department
of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Karim Zongo
- Department
of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Laurent K. Béland
- Department
of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Normand Mousseau
- Département
de Physique, Institut Courtois and Regroupement Québécois
sur les Matériaux de Pointe, Université
de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lena Simine
- Department
of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
2
|
Niyonkuru P, Bennett RA, Zachman MJ, Zimmerman JD. Effect of molecular permanent dipole moment on guest aggregation and exciton quenching in phosphorescent organic light emitting diodes. J Chem Phys 2024; 160:244304. [PMID: 38912679 DOI: 10.1063/5.0201560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
This study explores the effect of molecular permanent dipole moment (PDM) on aggregation of guest molecules in phosphorescent host-guest organic light-emitting diodes (OLEDs). Through a combination of photoluminescence measurements, high-angle annular dark-field scanning transmission electron microscopy analysis, and an Ising model based physical vapor-deposition simulation, we show that higher PDM of tris[2-phenylpyridinato-C2,N]iridium(III) guest can actually lead to a reduced aggregation relative to tris[bis[2-(2-pyridinyl-N)phenyl-C] (acetylacetonato)iridium(III) when doped into a non-polar host 1,3,5-tris(carbazol-9-yl)benzene. This study further explores the effect of host polarity by using a polar host 3',5'-di(carbazol-9-yl)-[1,1'-biphenyl]-3,5-dicarbonitrile, and it is shown that the polar host leads to reduced guest aggregation. This study provides a comprehensive understanding of the impact of molecular PDM on OLED material efficiency and stability, providing insights for optimizing phosphorescent OLED materials.
Collapse
Affiliation(s)
- Paul Niyonkuru
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Roland A Bennett
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jeramy D Zimmerman
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
3
|
Ju J, Chatterjee D, Voyles PM, Bock H, Ediger MD. Vapor-to-glass preparation of biaxially aligned organic semiconductors. J Chem Phys 2023; 159:211101. [PMID: 38038197 DOI: 10.1063/5.0174819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.
Collapse
Affiliation(s)
- Jianzhu Ju
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Debaditya Chatterjee
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 33600 Pessac, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Cakaj A, Schmid M, Hofmann A, Brütting W. Controlling Spontaneous Orientation Polarization in Organic Semiconductors─The Case of Phosphine Oxides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54721-54731. [PMID: 37970727 DOI: 10.1021/acsami.3c13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Upon film growth by physical vapor deposition, the preferential orientation of polar organic molecules can result in a nonzero permanent dipole moment (PDM) alignment, causing a macroscopic film polarization. This effect, known as spontaneous orientation polarization (SOP), was studied in the case of different phosphine oxides (POs). We investigate the control of SOP by molecular design and film-growth conditions. Our results show that using less polar POs with just one phosphor-oxygen bond yields an exceptionally high degree of SOP with the so-called giant surface potential (slope), reaching more than 150 mV nm-1 in a neat bis-4-(N-carbazol(yl)phenyl)phenyl phosphine oxide (BCPO) film grown at room temperature. Additionally, by altering the evaporation rate and substrate temperature, we are able to control the SOP magnitude over a broad range from 0 to almost 300 mV nm-1. Diluting BCPO in a nonpolar host enhances the PDM alignment only marginally, but combining temperature control with dipolar doping can result in highly aligned molecules with more than 80% of their PDMs standing upright on the substrate on average.
Collapse
Affiliation(s)
- Albin Cakaj
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Markus Schmid
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Alexander Hofmann
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Wolfgang Brütting
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| |
Collapse
|
5
|
Chatterjee D, Huang S, Gu K, Ju J, Yu J, Bock H, Yu L, Ediger MD, Voyles PM. Using 4D STEM to Probe Mesoscale Order in Molecular Glass Films Prepared by Physical Vapor Deposition. NANO LETTERS 2023; 23:2009-2015. [PMID: 36799489 DOI: 10.1021/acs.nanolett.3c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.
Collapse
Affiliation(s)
- Debaditya Chatterjee
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Applied Materials Inc., Santa Clara, California, 95054 United States
| | - Shuoyuan Huang
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Kaichen Gu
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jianzhu Ju
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal-CNRS & Université de Bordeaux, 33600 Pessac, France
| | - Lian Yu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
He S, Pakhomenko E, Holmes RJ. Process Engineered Spontaneous Orientation Polarization in Organic Light-Emitting Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1652-1660. [PMID: 36548807 DOI: 10.1021/acsami.2c17960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polar molecules with appreciable permanent dipole moments (PDMs) are widely used as the electron transport layer (ETL) in organic light-emitting devices (OLEDs). When the PDMs spontaneously align, a macroscopic polarization field can be observed, a phenomenon known as spontaneous orientation polarization (SOP). The presence of SOP in the ETL induces considerable surface potential and charge accumulation that is capable of quenching excitons and reducing device efficiency. While prior work has shown that the degree of SOP is sensitive to film processing conditions, this work considers SOP formation by quantitatively treating the vapor-deposited film as a supercooled glass, in analogy to prior work on birefringence in organic thin films. Importantly, the impact of varying thin-film deposition rate and relative temperature is unified into a single framework, providing a useful tool to predict the SOP formation efficiency for a polar material, as well as in blends of polar materials. Finally, in situ photoluminescence characterization and efficiency measurements reveal that SOP-induced exciton-polaron quenching can be reduced through an appropriate choice of processing conditions, leading to enhanced OLED efficiency.
Collapse
Affiliation(s)
- Siliang He
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Evgeny Pakhomenko
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Russell J Holmes
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| |
Collapse
|
7
|
Beena Unni A, Mroczka R, Kubacki J, Adrjanowicz K. Experimental evidence for the presence of irreversibly adsorbed material in vapor deposited glasses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Zhang A, Moore AR, Zhao H, Govind S, Wolf SE, Jin Y, Walsh PJ, Riggleman RA, Fakhraai Z. The role of intramolecular relaxations on the structure and stability of vapor-deposited glasses. J Chem Phys 2022; 156:244703. [DOI: 10.1063/5.0087600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature ( T dep). At high T dep, flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low T dep, stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of T dep. In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low T dep. These results indicate that small changes in intramolecular relaxation barriers can be used as an approach to independently tune the structure and mobility profiles of the surface layer and, thus, the stability and structure of PVD glasses.
Collapse
Affiliation(s)
- Aixi Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alex R. Moore
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haoqiang Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shivajee Govind
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sarah E. Wolf
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yi Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick J. Walsh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Unni AB, Winkler R, Duarte DM, Tu W, Chat K, Adrjanowicz K. Vapor-Deposited Thin Films: Studying Crystallization and α-relaxation Dynamics of the Molecular Drug Celecoxib. J Phys Chem B 2022; 126:3789-3798. [PMID: 35580265 PMCID: PMC9150116 DOI: 10.1021/acs.jpcb.2c01284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crystallization is one of the major challenges in using glassy solids for technological applications. Considering pharmaceutical drugs, maintaining a stable amorphous form is highly desirable for improved solubility. Glasses prepared by the physical vapor deposition technique got attention because they possess very high stability, taking thousands of years for an ordinary glass to achieve. In this work, we have investigated the effect of reducing film thickness on the α-relaxation dynamics and crystallization tendency of vapor-deposited films of celecoxib (CXB), a pharmaceutical substance. We have scrutinized its crystallization behavior above and below the glass-transition temperature (Tg). Even though vapor deposition of CXB cannot inhibit crystallization completely, we found a significant decrease in the crystallization rate with decreasing film thickness. Finally, we have observed striking differences in relaxation dynamics of vapor-deposited thin films above the Tg compared to spin-coated counterparts of the same thickness.
Collapse
Affiliation(s)
- Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Daniel Marques Duarte
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
10
|
Wolf SE, Fulco S, Zhang A, Zhao H, Walsh PJ, Turner KT, Fakhraai Z. Role of Molecular Layering in the Enhanced Mechanical Properties of Stable Glasses. J Phys Chem Lett 2022; 13:3360-3368. [PMID: 35403428 DOI: 10.1021/acs.jpclett.2c00232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The density, degree of molecular orientation, and molecular layering of vapor-deposited stable glasses (SGs) vary with substrate temperature (Tdep) below the glass-transition temperature (Tg). Density and orientation have been suggested to be factors influencing the mechanical properties of SGs. We perform nanoindentation on two molecules which differ by only a single substituent, allowing one molecule to adopt an in-plane orientation at low Tdep. The reduced elastic modulus and hardness of both molecules show similar Tdep dependences, with enhancements of 15-20% in reduced modulus and 30-45% in hardness at Tdep ≈ 0.8Tg, where the density of vapor-deposited films is enhanced by ∼1.4% compared to that of the liquid-quenched glass. At Tdep < 0.8Tg, one of the molecules produces highly unstable glasses with in-plane orientation. However, both systems show enhanced mechanics. Both the modulus and hardness correlate with the degree of layering, which is similar in both systems despite their variable stability. We suggest that nanoindentation performed normal to the film's surface is influenced by the tighter packing of the molecules in this direction.
Collapse
|
11
|
Ferron TJ, Thelen JL, Bagchi K, Deng C, Gann E, de Pablo JJ, Ediger MD, Sunday DF, DeLongchamp DM. Characterization of the Interfacial Orientation and Molecular Conformation in a Glass-Forming Organic Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3455-3466. [PMID: 34982543 DOI: 10.1021/acsami.1c19948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.
Collapse
Affiliation(s)
- Thomas J Ferron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jacob L Thelen
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Eliot Gann
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel F Sunday
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dean M DeLongchamp
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Bishop C, Bagchi K, Toney MF, Ediger MD. Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. J Chem Phys 2022; 156:014504. [PMID: 34998353 DOI: 10.1063/5.0074092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate-substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael F Toney
- College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Whitelam S, Harrowell P. Deposition control of model glasses with surface-mediated orientational order. J Chem Phys 2021; 155:124502. [PMID: 34598548 DOI: 10.1063/5.0061042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We introduce a minimal model of solid-forming anisotropic molecules that displays, in thermal equilibrium, surface orientational order without bulk orientational order. The model reproduces the nonequilibrium behavior of recent experiments in which a bulk nonequilibrium structure grown by deposition contains regions of orientational order characteristic of the surface equilibrium. This order is deposited, in general, in a nonuniform way because of the emergence of a growth-poisoning mechanism that causes equilibrated surfaces to grow slower than non-equilibrated surfaces. We use evolutionary methods to design oscillatory protocols able to grow nonequilibrium structures with uniform order, demonstrating the potential of protocol design for the fabrication of this class of materials.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Luo P, Zhu F, Lv YM, Lu Z, Shen LQ, Zhao R, Sun YT, Vaughan GBM, di Michiel M, Ruta B, Bai HY, Wang WH. Microscopic Structural Evolution during Ultrastable Metallic Glass Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40098-40105. [PMID: 34375527 DOI: 10.1021/acsami.1c10716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By decreasing the rate of physical vapor deposition, ZrCuAl metallic glasses with improved stability and mechanical performances can be formed, while the microscopic structural mechanisms remain unclear. Here, with scanning transmission electron microscopy and high-energy synchrotron X-ray diffraction, we found that the metallic glass deposited at a higher rate exhibits a heterogeneous structure with compositional fluctuations at a distance of a few nanometers, which gradually disappear on decreasing the deposition rate; eventually, a homogeneous structure is developed approaching ultrastability. This microscopic structural evolution suggests the existence of the following two dynamical processes during ultrastable metallic glass formation: a faster diffusion process driven by the kinetic energy of the depositing atoms, which results in nanoscale compositional fluctuations, and a slower collective relaxation process that eliminates the compositional and structural heterogeneity, equilibrates the deposited atoms, and strengthens the local atomic connectivity.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Zhu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yu-Miao Lv
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Lu
- World Premier International Research Centers Initiative (WPI), Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Lai-Quan Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gavin B M Vaughan
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Marco di Michiel
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Beatrice Ruta
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne 69622, France
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Bishop C, Chen Z, Toney MF, Bock H, Yu L, Ediger MD. Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. J Phys Chem B 2021; 125:2761-2770. [PMID: 33683124 DOI: 10.1021/acs.jpcb.0c11564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.0 Tg). This work extends RTS to a new structural motif, hexagonal columnar liquid crystal order, which is being explored for organic electronic applications. By several metrics, including the apparent average face-to-face nearest-neighbor distance, physical vapor deposition (PVD) glasses of the phenanthroperylene ester are as ordered as the glass prepared by cooling the equilibrium liquid crystal. By other measures, the PVD glasses are less ordered than the cooled liquid crystal. We explain the difference in the maximum attainable order with the existence of a gradient in molecular mobility at the free surface of a liquid crystal and its impact upon different mechanisms of structural rearrangement. This free surface equilibration mechanism explains the success of the RTS principle and provides guidance regarding the types of order most readily enhanced by vapor deposition. This work extends the applicability of RTS to include molecular systems with a diverse range of higher-order liquid-crystalline morphologies that could be useful for new organic electronic applications.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Tourlakis GM, Adamopoulos SAT, Gavra IK, Milpanis AA, Tsagri LF, Pachygianni ASG, Chatzikokolis SS, Tsekouras AA. Sign flipping of spontaneous polarization in vapour-deposited films of small polar organic molecules. Phys Chem Chem Phys 2021; 23:14352-14362. [PMID: 34169950 DOI: 10.1039/d1cp01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Films of polar molecules vapour-deposited on sufficiently cold substrates are not only amorphous, but also exhibit charge polarization across their thickness. This is an effect known for 50 years, but it is very poorly understood and no mechanism exists in the literature that can explain and predict it. We investigated this bulk effect for 18 small organic molecules as a function of substrate temperature (30-130 K). We found that, as a rule, alcohol films have the negative end on the vacuum side at all temperatures. Alkyl acetates and toluene showed positive voltages which reached a maximum around the middle of the temperature range investigated. Tetrahydrofuran showed positive voltages which dropped with increasing deposition temperature. Diethyl ether, acetone, propanal, and butanal showed positive film voltages at low temperatures, negative at intermediate temperatures and again positive voltages at higher temperatures. In all cases, film voltages were monitored during heating leading to film evaporation. Film voltages were irreversibly eliminated before film elimination, but voltage profiles during temperature ramps differed vastly depending on compound and deposition temperature. In general, there was a gradual voltage reduction, but propanal, butanal, and diethyl ether showed a change in voltage sign during temperature ramp in films deposited at low temperatures. All these data expand substantially the experimental information regarding spontaneous polarization in vapour-deposited films, but still require complementary measurements as well as numerical simulations for a detailed explanation of the phenomenon.
Collapse
Affiliation(s)
- Georgios M Tourlakis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Sotirios Alexandros T Adamopoulos
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Irini K Gavra
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Alexandros A Milpanis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Liveria F Tsagri
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Aikaterini Sofia G Pachygianni
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Stylianos S Chatzikokolis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Athanassios A Tsekouras
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| |
Collapse
|
17
|
Thoms E, Gabriel JP, Guiseppi-Elie A, Ediger MD, Richert R. In situ observation of fast surface dynamics during the vapor-deposition of a stable organic glass. SOFT MATTER 2020; 16:10860-10864. [PMID: 33242316 DOI: 10.1039/d0sm01916j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By measuring the increments of dielectric capacitance (ΔC) and dissipation (Δtan δ) during physical vapor deposition of a 110 nm film of a molecular glass former, we provide direct evidence of the mobile surface layer that is made responsible for the extraordinary properties of vapor deposited glasses. Depositing at a rate of 0.1 nm s-1 onto a substrate at Tdep = 75 K = 0.82Tg, we observe a 2.5 nm thick surface layer with an average relaxation time of 0.1 s, while the glass growing underneath has a high kinetic stability. The level of Δtan δ continues to decrease for thousands of seconds after terminating the deposition process, indicating a slow aging-like increase in packing density near the surface. At very low deposition temperatures, 32 and 42 K, the surface layer thicknesses and mobilities are reduced, as are the kinetic stabilities.
Collapse
Affiliation(s)
- E Thoms
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | | | | | |
Collapse
|
18
|
Polyamorphism of vapor-deposited amorphous selenium in response to light. Proc Natl Acad Sci U S A 2020; 117:24076-24081. [PMID: 32934146 DOI: 10.1073/pnas.2009852117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhanced surface mobility is critical in producing stable glasses during physical vapor deposition. In amorphous selenium (a-Se) both the structure and dynamics of the surface can be altered when exposed to above-bandgap light. Here we investigate the effect of light on the properties of vapor-deposited a-Se glasses at a range of substrate temperatures and deposition rates. We demonstrate that deposition both under white light illumination and in the dark results in thermally and kinetically stable glasses. Compared to glasses deposited in the dark, stable a-Se glasses formed under white light have reduced thermal stability, as measured by lower density change, but show significantly improved kinetic stability, measured as higher onset temperature for transformation. While light induces enhanced mobility that penetrates deep into the surface, resulting in lower density during vapor deposition, it also acts to form more networked structures at the surface, which results in a state that is kinetically more stable with larger optical birefringence. We demonstrate that the structure formed during deposition with light is a state that is not accessible through liquid quenching, aging, or vapor deposition in the dark, indicating the formation of a unique amorphous solid state.
Collapse
|
19
|
Bagchi K, Ediger MD. Controlling Structure and Properties of Vapor-Deposited Glasses of Organic Semiconductors: Recent Advances and Challenges. J Phys Chem Lett 2020; 11:6935-6945. [PMID: 32787194 DOI: 10.1021/acs.jpclett.0c01682] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past decade has seen great progress in manipulating the structure of vapor-deposited glasses of organic semiconductors. Upon varying the substrate temperature during deposition, glasses with a wide range of density and molecular orientation can be prepared from a given molecule. We review recent studies that show the structure of vapor-deposited glasses can be tuned to significantly improve the external quantum efficiency and lifetime of organic light-emitting diodes (OLEDs). We highlight the ability of molecular simulations to reproduce experimentally observed structures, setting the stage for in silico design of vapor-deposited glasses in the coming decade. Finally, we identify research opportunities for improving the properties of organic semiconductors by controlling the structure of vapor-deposited glasses.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|