1
|
Hughes E, O’Neill NS, Schweitzer-Stenner R. Ordered Aggregates of Fmoc-Diphenylalanine at Alkaline pH as a Precursor of Fibril Formation and Peptide Gelation. J Phys Chem B 2025; 129:260-272. [PMID: 39710982 PMCID: PMC11726616 DOI: 10.1021/acs.jpcb.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
The ultrashort peptide N-fluorenylmethoxycarbonyl-phenylalanyl-phenylalanine (FmocFF) has been largely investigated due to its ability to self-assemble into fibrils (100 nm-μm scale) that can form a sample-spanning gel network. The initiation of the gelation process requires either a solvent switch (water added to dimethyl sulfoxide) or a pH-switch (alkaline to neutral) protocol, both of which ensure the solubility of the peptide as a necessary step preceding gelation. While the respective gel phases are well understood in structural and material characteristics terms the pregelation conditions are known to a lesser extent. The question we asked is to what extent the gel-forming fibrils are already partially formed, i.e., oligomers or protofibrils. Focusing on the pregelation conditions for the pH-switch method, we investigated the self-assembly of soluble FmocFF aggregates in alkaline pH by UV circular dichroism, IR, vibrational circular dichroism, and 1H NMR spectroscopy for different peptide concentrations and more systematically as a function of temperature. The temperature dependence of the UVCD spectra of FmocFF in H2O and D2O revealed a complicated isotope effect that affects the peptide backbone and fluorene conformations in peptide aggregates differently. Moreover, we found that the melting of formed aggregates depends on peptide concentration in a nonmonotonic way. At 20 mM the UVCD data revealed the population of at least two different thermodynamic intermediate states, which seem to differ in terms of the relative arrangement of the fluorene moiety. The IR spectrum of this sample at room temperature indicates an antiparallel β-sheet arrangement, as suggested earlier in the literature. However, we show that this interpretation can only be valid if one invokes a nondispersive redshift of the two amide I' bands in a locally crystalline environment. The respective vibrational circular dichroism spectrum of the amide I' region is consistent with a left-handed helically twisted structure of the formed aggregates. A comparison of our data with spectra of the aqueous gel phase suggests that fibrils in the latter resemble the ones at alkaline pH probed by our experiments.
Collapse
Affiliation(s)
- Emily Hughes
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
2
|
Rogers DM, Do H, Hirst JD. An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins. J Phys Chem B 2024; 128:7350-7361. [PMID: 39034688 DOI: 10.1021/acs.jpcb.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a β-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for β-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (β strand), concanavalin A (β type I), elastase (β type II), papain (α + β), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.
Collapse
Affiliation(s)
- David M Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
3
|
Menant S, Tognetti V, Oulyadi H, Guilhaudis L, Ségalas-Milazzo I. A Joint Experimental and Theoretical Study on the Structural and Spectroscopic Properties of the Piv-Pro-d-Ser-NHMe Peptide. J Phys Chem B 2024; 128:6704-6715. [PMID: 38967625 DOI: 10.1021/acs.jpcb.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
In this paper, we investigate the secondary structure of the Piv-Pro-d-Ser-NHMe peptide by means of nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) experiments, in conjunction with theoretical simulations based on molecular dynamics and time-dependent density functional theory calculations including polarizable embedding to account for solvent effects. The various experimental and theoretical protocols are assessed and validated, and are shown to provide a consistent description of the turn structure adopted by this peptide in solution. In addition, a simple fitting procedure is proposed to make the simulated and experimental ECD almost perfectly match. This full methodology is finally tested on another small peptide, enlightening its efficiency and robustness.
Collapse
Affiliation(s)
- Sébastien Menant
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Vincent Tognetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Hassan Oulyadi
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Laure Guilhaudis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Isabelle Ségalas-Milazzo
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
4
|
Aschi M, Palombi L, Amadei A. Theoretical-Computational Modeling of CD Spectra of Aqueous Monosaccharides by Means of Molecular Dynamics Simulations and Perturbed Matrix Method. Molecules 2023; 28:molecules28083591. [PMID: 37110825 PMCID: PMC10144652 DOI: 10.3390/molecules28083591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The electronic circular dichroism (ECD) spectra of aqueous d-glucose and d-galactose were modeled using a theoretical-computational approach combining molecular dynamics (MD) simulations and perturbed matrix method (PMM) calculations, hereafter termed MD-PMM. The experimental spectra were reproduced with a satisfactory accuracy, confirming the good performances of MD-PMM in modeling different spectral features in complex atomic-molecular systems, as already reported in previous studies. The underlying strategy of the method was to perform a preliminary long timescale MD simulation of the chromophore followed by the extraction of the relevant conformations through essential dynamics analysis. On this (limited) number of relevant conformations, the ECD spectrum was calculated via the PMM approach. This study showed that MD-PMM was able to reproduce the essential features of the ECD spectrum (i.e., the position, the intensity, and the shape of the bands) of d-glucose and d-galactose while avoiding the rather computationally expensive aspects, which were demonstrated to be important for the final outcome, such as (i) the use of a large number of chromophore conformations; (ii) the inclusion of quantum vibronic coupling; and (iii) the inclusion of explicit solvent molecules interacting with the chromophore atoms within the chromophore itself (e.g., via hydrogen bonds).
Collapse
Affiliation(s)
- Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Laura Palombi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
5
|
Monti M, Stener M, Coccia E. Electronic circular dichroism from real-time propagation in state space. J Chem Phys 2023; 158:084102. [PMID: 36859092 DOI: 10.1063/5.0136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper, we propose to compute the electronic circular dichroism (ECD) spectra of chiral molecules using a real-time propagation of the time-dependent Schrödinger equation (TDSE) in the space of electronic field-free eigenstates, by coupling TDSE with a given treatment of the electronic structure of the target. The time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The full matrix representing the transition magnetic moment in the space of electronic states is generated from that among pairs of molecular orbitals. In the present work, we show the ECD spectra of methyloxirane, of several conformers of L-alanine, and of the Λ-Co(acac)3 complex, computed from a singly excited ansatz of time-dependent density functional theory eigenstates. The time-domain ECD spectra properly reproduce the frequency-domain ones obtained in the linear-response regime and quantitatively agree with the available experimental data. Moreover, the time-domain approach to ECD allows us to naturally go beyond the ground-state rotationally averaged ECD spectrum, which is the standard outcome of the linear-response theory, e.g., by computing the ECD spectra from electronic excited states.
Collapse
Affiliation(s)
- M Monti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
6
|
Zhang X, Li T, Zhao L, Xu H, Yan C, Jin Y, Wang Z. DFT-aided infrared and electronic circular dichroism spectroscopic study of cyclopeptide S-PK6 and the exploration of its antitumor potential by molecular docking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Monti M, Stener M, Aschi M. A computational approach for modeling electronic circular dichroism of solvated chromophores. J Comput Chem 2022; 43:2023-2036. [PMID: 36134712 PMCID: PMC9825941 DOI: 10.1002/jcc.27001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
The present study consists in a novel computational protocol to model the UV-circular dichroism spectra of solvated species. It makes use of quantum-chemical calculations on a series of conformations of a flexible chromophore or on a series of chromophore/solvent clusters extracted from molecular dynamic simulations. The protocol is described and applied to the aqueous cationic tripeptide GAG+ and to the aqueous neutral decapeptide (GVGVP)2 . The protocol has proven able to: (i) properly consider the conformational motion of solute in the given environment; (ii) give the actual statistical weight of each conformational state; (iii) provide a reliable quantum mechanical method able to reproduce the spectral features. Temperature effects on conformations and spectral properties are properly taken into account. The role of explicit solvent on the conformational analysis and the spectra calculation is discussed. The comparison of the calculated circular dichroism spectra with experimental ones recorded at different temperatures represents a strict validation test of the method.
Collapse
Affiliation(s)
- Marta Monti
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di TriesteTriesteItaly
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di TriesteTriesteItaly
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e ChimicheUniversità dell'AquilaL'AquilaItaly
| |
Collapse
|
8
|
O'Neill N, Lima TA, Ferreira FF, Thursch L, Alvarez N, Schweitzer-Stenner R. Forbidden Secondary Structures Found in Gel-Forming Fibrils of Glycylphenylalanylglycine. J Phys Chem B 2022; 126:8080-8093. [PMID: 36194765 DOI: 10.1021/acs.jpcb.2c05010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The zwitterionic l-tripeptide glycylphenylalanylglycine self-assembles into very long crystalline fibrils in an aqueous solution, which causes the formation of an exceptionally strong gel phase (G' ∼ 5 × 106 Pa). The Rietveld refinement analysis of its powder X-ray diffraction (PXRD) pattern reveals a unit cell with four peptides forming a P212121 space group and adopting an inverse polyproline II conformation, that is, a right-handed helical structure that occupies the "forbidden" region of the Ramachandran plot. This unusual structure is stabilized by a plethora of intermolecular interactions facilitated by the large number of different functional groups of the unblocked tripeptide. Comparisons of simulated and experimental Fourier transform infrared and vibrational circular dichroism (VCD) amide I' profiles corroborate the PXRD structure. Our experimental setup reduces the sample to a quasi-two-dimensional network of fibrils. We exploited the influence of this reduced dimensionality on the amide I VCD to identify the main fibril axis. We demonstrate that PXRD, vibrational spectroscopy, and amide I simulations provide a powerful toolset for secondary structure and fibril axis determination.
Collapse
Affiliation(s)
- Nichole O'Neill
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States.,Department of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States
| | - Thamires A Lima
- Department of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States
| | - Fabio Furlan Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. Dos Estados, 5001, S622-3, Santo André, São Paulo09210-580, Brazil
| | - Lavenia Thursch
- Department of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States
| | - Nicolas Alvarez
- Department of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
9
|
Zhang H, Wu J, Wang J, Xiao S, Zhao L, Yan R, Wu X, Wang Z, Fan L, Jin Y. Novel Isoindolinone-Based Analogs of the Natural Cyclic Peptide Fenestin A: Synthesis and Antitumor Activity. ACS Med Chem Lett 2022; 13:1118-1124. [PMID: 35859879 DOI: 10.1021/acsmedchemlett.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Small- and medium-sized cyclopeptides have been found to have extensive bioactivities and have drawn much attention from medicinal chemists. In the work described in this paper, various cyclic peptide analogs of Fenestin A were synthesized by intramolecular photoinduced electron-transfer cyclization reactions to study the influence of slight structural changes on the bioactivity of small cyclopeptides. The incorporation of thiazole and rigid isoindolinone fragments was found to improve the bioactivity of the cyclopeptide. Detailed in vitro studies of the apoptosis mechanism, mitochondrial membrane potential, cell cycle, intracellular Ca2+ concentration, and lactate dehydrogenase activity following treatment with a cyclopeptide showed that the cyclopeptide could induce apoptosis of tumor cells and lead to cycle arrest in the G2/M phase. The research also suggested that the photoinduced reaction could be applied to construct cyclic peptides stereoselectively, and the introduction of rigid fragments could enhance the biological activity of cyclopeptide drugs.
Collapse
Affiliation(s)
- Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Jingwan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Jingchun Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Shimei Xiao
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Lei Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Li Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, P. R. China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| |
Collapse
|
10
|
Excitonic Model and Circular Dichroism Spectrum of Bacteriorhodopsin. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Far-UV circular dichroism signatures indicate fluorophore labeling induced conformational changes of penetratin. Amino Acids 2022; 54:1109-1113. [PMID: 35301594 PMCID: PMC9217886 DOI: 10.1007/s00726-022-03149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
Fluorescent labeling is a broadly utilized approach to assess in vitro and in vivo behavior of biologically active, especially cell-penetrating and antimicrobial peptides. In this communication, far-UV circular dichroism (CD) spectra of penetratin (PEN) fluorophore conjugates reported previously have been re-evaluated. Compared to the intrinsically disordered native peptide, rhodamine B and carboxyfluorescein derivatives of free and membrane-bound PEN exhibit extrinsic CD features. Potential sources of these signals displayed above 220 nm are discussed suggesting the contributions of both intra- and intermolecular chiral exciton coupling mechanisms. Careful evaluation of the CD spectra of fluorophore-labeled peptides is a valuable tool for early detection of labeling-provoked structural alterations which in turn may modify the membrane binding and cellular uptake compared to the unconjugated form.
Collapse
|
12
|
Chen CG, Giustini M, Scipioni A, Amadei A, D’Abramo M. Theoretical-computational modelling of the L-alanine CD spectrum in water. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhao L, Xiao S, Jiang S, Jin Y, Fang W, Wang Z. Detailed structural investigation of Crizotinib and the exploration of its antitumor potential by DFT calculations and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kubyshkin V, Bürck J, Babii O, Budisa N, Ulrich AS. Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities? Phys Chem Chem Phys 2021; 23:26931-26939. [PMID: 34825904 DOI: 10.1039/d1cp04551b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and β-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure. To showcase possible effects due to the medium, in this work, we report an experimental spectroscopic study of polyproline-II-forming oligomeric peptides in various environments: solvents, detergent micelles, and liposomes. Strikingly, the examination of an oligomeric peptide in a solvent series showed a remarkable 7 nm solvatochromic shift in the main negative band starting with hexafluoropropan-2-ol and moving to hexane. Furthermore, a previously predicted positive band below 200 nm was discovered in the spectra in nonpolar environments. In isotropic liposomes, the expected transition to the transmembrane state correlated with the appearance of a positive band at 228 nm. Our results demonstrate that changes in solvation should be taken into consideration when assessing the circular dichroism spectra of peptides expected to adopt the polyproline-II conformation. Although this precaution may complicate spectral analysis, characterization of solvent-induced spectral changes can generate new opportunities for testing the location of peptides in complex systems such as micelles or lipid bilayers.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada. .,Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| |
Collapse
|
15
|
Valls A, Altava B, Aseyev V, García-Verdugo E, Luis SV. Imidazolium based gemini amphiphiles derived from L-valine. Structural elements and surfactant properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Milorey B, Schweitzer-Stenner R, Andrews B, Schwalbe H, Urbanc B. Short peptides as predictors for the structure of polyarginine sequences in disordered proteins. Biophys J 2021; 120:662-676. [PMID: 33453267 PMCID: PMC7896027 DOI: 10.1016/j.bpj.2020.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins and intrinsically disordered regions are frequently enriched in charged amino acids. Intrinsically disordered regions are regularly involved in important biological processes in which one or more charged residues is the driving force behind a protein-biomolecule interaction. Several lines of experimental and computational evidence suggest that polypeptides and proteins that carry high net charges have a high preference for extended conformations with average end-to-end distances exceeding expectations for self-avoiding random coils. Here, we show that charged arginine residues even in short glycine-capped model peptides (GRRG and GRRRG) significantly affect the conformational propensities of each other when compared with the intrinsic propensities of a mostly unperturbed arginine in the tripeptide GRG. A conformational analysis based on experimentally determined J-coupling constants from heteronuclear NMR spectroscopy and amide I' band profiles from vibrational spectroscopy reveals that nearest-neighbor interactions stabilize extended β-strand conformations at the expense of polyproline II and turn conformations. The results from molecular dynamics simulations with a CHARMM36m force field and TIP3P water reproduce our results only to a limited extent. The use of the Ramachandran distribution of the central residue of GRRRG in a calculation of end-to-end distances of polyarginines of different length yielded the expected power law behavior. The scaling coefficient of 0.66 suggests that such peptides would be more extended than predicted by a self-avoiding random walk. Our findings thus support in principle theoretical predictions.
Collapse
Affiliation(s)
- Bridget Milorey
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania
| | | | - Brian Andrews
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - Harald Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe Universität, Frankfurt, Germany
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|