1
|
Parmar SM, Dean W, Do C, Browning JF, Klein JM, Gurkan BE, McDaniel JG. Structural Properties of [N1888][TFSI] Ionic Liquid: A Small Angle Neutron Scattering and Polarizable Molecular Dynamics Study. J Phys Chem B 2024; 128:11313-11327. [PMID: 39498611 DOI: 10.1021/acs.jpcb.4c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In this study, we investigate the quaternary ammonium-based ionic liquid (QAIL), methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, [N1888][TFSI], utilizing small angle neutron scattering (SANS) measurements and polarizable molecular dynamics (MD) simulations to characterize the short- and long-range liquid structure. Scattering structure factors show signatures of three length scales in reciprocal space indicative of alternating polarity (k ∼ 0.44 Å-1), charge (k ∼ 0.75 Å-1), and neighboring or adjacent (k ∼ 1.46 Å-1) domains. Excellent agreement between simulation and experimental scattering structure factors validates various simulation analyses that provide detailed atomistic characterization of the different length scale correlations. The first solvation shell structure is illustrated by obtaining radial, angular, dihedral, and combined distribution functions, where two dominant spatial motifs, N+···N- and N+···O-, compete for optimal packing around the polar head of the [N1888]+ cation. Intermediate and long-range structures are governed by the balance between local electroneutrality and octyl chain networking, respectively. By computing the charge-correlation structure factor, SZZ, and the spatial extent of the octyl chain network using graph theory, the bulk-phase structure of [N1888][TFSI] is characterized in terms of electrostatic screening and apolar domain formation length scales.
Collapse
Affiliation(s)
- Shehan M Parmar
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William Dean
- Chemical and Biomolecular Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey M Klein
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Burcu E Gurkan
- Chemical and Biomolecular Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jesse G McDaniel
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Renfro CA, Hymel JH, McDaniel JG. Redox potentials in ionic liquids: Anomalous behavior? J Chem Phys 2024; 160:204505. [PMID: 38808746 DOI: 10.1063/5.0211056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Redox potentials depend on the nature of the solvent/electrolyte through the solvation energies of the ionic solute species. For concentrated electrolytes, ion solvation may deviate significantly from the Born model predictions due to ion pairing and correlation effects. Recently, Ghorai and Matyushov [J. Phys. Chem. B 124, 3754-3769 (2020)] predicted, on the basis of linear response theory, an anomalous trend in the solvation energies of room temperature ionic liquids, with deviations of hundreds of kJ/mol from the Born model for certain size solutes/ions. In this work, we computationally evaluate ionic solvation energies in the prototypical ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM/BF4), to further explore this behavior and benchmark several of the approximations utilized in the solvation energy predictions. For comparison, we additionally compute solvation energies within acetonitrile and molten NaCl salt to illustrate the limiting behavior of purely dipolar and ionic solvents. We find that the overscreening effect, which results from the inherent charge oscillations of the ionic liquid, is substantially reduced in magnitude due to screening from the dipoles of the molecular ions. Therefore, for the molten NaCl salt, for which the ions do not have permanent dipoles, modulation of ionic solvation energies from the overscreening effect is most significant. The conclusion is that ionic liquids do indeed exhibit unique solvation behavior due to peak(s) in the electrical susceptibility caused by the ion shell structure; redox potential shifts for BMIM/BF4 are of more modest order ∼0.1 V, but may be larger for other ionic liquids that approach molten salt behavior.
Collapse
Affiliation(s)
- Chloe A Renfro
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - John H Hymel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
3
|
Xiao T, Song X. A Gaussian field approach to the solvation of spherical ions in electrolyte solutions. J Chem Phys 2024; 160:034102. [PMID: 38226821 DOI: 10.1063/5.0187141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
In this work, the electrostatic response of an electrolyte solution to a spherical ion is studied with a Gaussian field theory. In order to capture the ionic correlation effect in concentrated solutions, the bulk dielectric response function is described by a two-Yukawa response function. The modified response function of the solution is solved analytically in the spherical geometry, from which the induced charge density and the electrostatic energy are also derived analytically. Comparisons with results for small ions in electrolyte solutions from the hyper-netted chain theory demonstrate the validity of the Gaussian field theory.
Collapse
Affiliation(s)
- Tiejun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang People's Republic of China
| | - Xueyu Song
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Xiao T, Zhou Y. A cavity formation energy formula for hard spheres in simple electrolyte solutions. Phys Chem Chem Phys 2023; 25:13080-13087. [PMID: 37115098 DOI: 10.1039/d3cp00623a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A formula for cavity formation energy of a hard sphere in restricted primitive electrolyte solutions is derived based on the integral equation theory. Specifically, the contact values of radial distribution functions between the hard sphere and the ionic species, determined analytically from the first-order mean spherical approximation theory, are used to evaluate the cavity formation energy. In the large solute-size limit, the scaling relation of the cavity formation energy further leads to an analytical expression for the surface tension of the electrolyte solution near a curved interface. Our theory is applied to hard spheres immersed in restricted primitive electrolyte solutions, where the good agreement of the cavity formation energy with the hyper-netted chain theory demonstrates the accuracy of our theory.
Collapse
Affiliation(s)
- Tiejun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, People's Republic of China.
| | - Yun Zhou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, People's Republic of China.
| |
Collapse
|
5
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
6
|
Kodis G, Ertem MZ, Newton MD, Matyushov DV. Reorganization Energy of Electron Transfer in Ionic Liquids. J Phys Chem Lett 2022; 13:3297-3303. [PMID: 35389644 DOI: 10.1021/acs.jpclett.2c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bandshape analysis of charge-transfer optical bands in room-temperature ionic liquids (ILs) was performed to extract the reorganization energy of electron transfer. Remarkably, the reorganization energies in ILs are close to those in cyclohexane. This result runs against common wisdom in the field since conducting ILs, which are characterized by an infinite static dielectric constant, and nonpolar cyclohexane fall to the opposite ends of the polarity scale based on their dielectric constants. Theoretical calculations employing structure factors of ILs from molecular dynamics simulations support the low values of the reorganization energy. Standard dielectric arguments do not apply to solvation in ILs, and nonergodic reorganization energies are required for a quantitative analysis.
Collapse
Affiliation(s)
- Gerdenis Kodis
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Marshall D Newton
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
7
|
Abstract
The pathway of activationless proton transfer induced by an electron-transfer reaction is studied theoretically. Long-range electron transfer produces highly nonequilibrium medium polarization that can drive proton transfer through an activationless transition during the process of thermalization, dynamically altering the screening of the electron-proton Coulomb interaction by the medium. The cross electron-proton reorganization energy is the main energy parameter of the theory, which exceeds in magnitude the proton-transfer reorganization energy roughly by the ratio of the electron-transfer to proton-transfer distance. This parameter, which can be either positive or negative, is related to the difference in pKa values in two electron-transfer states. The relaxation time of the medium is on the (sub)picosecond time scale, which establishes the characteristic time for activationless proton transfer. Microscopic calculations predict substantial retardation of the collective relaxation dynamics compared to the continuum estimates due to the phenomenology analogous to de Gennes narrowing. Nonequilibrium medium configuration promoting proton transfer can be induced by either thermal or photoinduced charge transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Marshall D Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, United States
| |
Collapse
|
8
|
Kalisz J, Nogala W, Adamiak W, Gocyla M, Girault HH, Opallo M. The Solvent Effect on H 2 O 2 Generation at Room Temperature Ionic Liquid|Water Interface. Chemphyschem 2021; 22:1352-1360. [PMID: 33909320 DOI: 10.1002/cphc.202100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Indexed: 12/15/2022]
Abstract
H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.
Collapse
Affiliation(s)
- Justyna Kalisz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Adamiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mateusz Gocyla
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Amaytique, Ecole Polytechnique Federale de Lausanne, EPFL, Valais, Wallis, Rue d'Industrie 17, 1950, Sion, Switzerland
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
9
|
Leier J, Michenfelder NC, Unterreiner A. Understanding the Photoexcitation of Room Temperature Ionic Liquids. ChemistryOpen 2021; 10:72-82. [PMID: 33565733 PMCID: PMC7874249 DOI: 10.1002/open.202000278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Photoexcitation of (neat) room temperature ionic liquids (RTILs) leads to the observation of transient species that are reminiscent of the composition of the RTILs themselves. In this minireview, we summarize state-of-the-art in the understanding of the underlying elementary processes. By varying the anion or cation, one aim is to generally predict radiation-induced chemistry and physics of RTILs. One major task is to address the fate of excess electrons (and holes) after photoexcitation, which implies an overview of various formation mechanisms considering structural and dynamical aspects. Therefore, transient studies on time scales from femtoseconds to microseconds can greatly help to elucidate the most relevant steps after photoexcitation. Sometimes, radiation may eventually result in destruction of the RTILs making photostability another important issue to be discussed. Finally, characteristic heterogeneities can be associated with specific physicochemical properties. Influencing these properties by adding conventional solvents, like water, can open a wide field of application, which is briefly summarized.
Collapse
Affiliation(s)
- Julia Leier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Nadine C. Michenfelder
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| |
Collapse
|
10
|
Knudtzon MN, Blank DA. Photodetachment and Electron Dynamics in 1-Butyl-1-methyl-pyrrolidinium Dicyanamide. J Phys Chem B 2020; 124:9144-9153. [PMID: 32955885 DOI: 10.1021/acs.jpcb.0c06508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ultrafast transient absorption spectrum of 1-butyl-1-methyl-pyrrolidinium dicyanamide, [Pyr1,4+][DCA-], was measured in the visible and near-infrared (IR) spectral regions. Excitation of the liquid at 4.6 eV created initially delocalized and highly reactive electrons that either geminately recombined (69%) or localized onto a cavity with a time constant of ∼300 fs. Electron localization was reflected in the evolution of the TA spectrum and the time-dependent loss of reactivity with a dichloromethane quencher. The delocalized initial state and spectrum of the free electrons were consistent with computational predictions by Xu and Margulis [ J. Phys. Chem. B, 2015, 119, 532-542] on excess electrons in [Pyr1,4+][DCA-]. The computational study considered two possible localization mechanisms for excess electrons, localization on ions, and localization on cavities. In the case of photogenerated electron-hole pairs, the results presented here demonstrate localization to cavities as the dominant channel. Following localization onto a cavity, the free electrons underwent solvation and loss of reactivity with the quencher with rates that slowed in time. The dynamics were similar to an analogous prior study on the related liquid [Pyr1,x+][NTf2-]. One significant difference was the larger yield of free electrons from photoexcitation of [Pyr1,4+][DCA-]. This was found to primarily reflect more efficient localization onto cavities rather than a slower geminate recombination rate.
Collapse
Affiliation(s)
- Meghan N Knudtzon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David A Blank
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|