1
|
Jiang Y, Zhang X, Nie H, Fan J, Di S, Fu H, Zhang X, Wang L, Tang C. Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping. Nat Commun 2024; 15:6060. [PMID: 39025860 PMCID: PMC11258254 DOI: 10.1038/s41467-024-50315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.
Collapse
Affiliation(s)
- Yida Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xinghe Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianxiong Fan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lijuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Leśniewski M, Pyrka M, Czaplewski C, Co NT, Jiang Y, Gong Z, Tang C, Liwo A. Assessment of Two Restraint Potentials for Coarse-Grained Chemical-Cross-Link-Assisted Modeling of Protein Structures. J Chem Inf Model 2024; 64:1377-1393. [PMID: 38345917 PMCID: PMC10900291 DOI: 10.1021/acs.jcim.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
The influence of distance restraints from chemical cross-link mass spectroscopy (XL-MS) on the quality of protein structures modeled with the coarse-grained UNRES force field was assessed by using a protocol based on multiplexed replica exchange molecular dynamics, in which both simulated and experimental cross-link restraints were employed, for 23 small proteins. Six cross-links with upper distance boundaries from 4 Å to 12 Å (azido benzoic acid succinimide (ABAS), triazidotriazine (TATA), succinimidyldiazirine (SDA), disuccinimidyl adipate (DSA), disuccinimidyl glutarate (DSG), and disuccinimidyl suberate (BS3)) and two types of restraining potentials ((i) simple flat-bottom Lorentz-like potentials dependent on side chain distance (all cross-links) and (ii) distance- and orientation-dependent potentials determined based on molecular dynamics simulations of model systems (DSA, DSG, BS3, and SDA)) were considered. The Lorentz-like potentials with properly set parameters were found to produce a greater number of higher-quality models compared to unrestrained simulations than the MD-based potentials, because the latter can force too long distances between side chains. Therefore, the flat-bottom Lorentz-like potentials are recommended to represent cross-link restraints. It was also found that significant improvement of model quality upon the introduction of cross-link restraints is obtained when the sum of differences of indices of cross-linked residues exceeds 150.
Collapse
Affiliation(s)
- Mateusz Leśniewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maciej Pyrka
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department
of Physics and Biophysics, University of
Warmia and Mazury, ul. Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Cezary Czaplewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nguyen Truong Co
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Yida Jiang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhou Gong
- Innovation
Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 30 W. Xiao Hong Shan, Wuhan 430071, China
| | - Chun Tang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Adam Liwo
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Disulfide bond and crosslinking analyses reveal inter-domain interactions that contribute to the rigidity of placental malaria VAR2CSA structure and formation of CSA binding channel. Int J Biol Macromol 2023; 226:143-158. [PMID: 36470436 DOI: 10.1016/j.ijbiomac.2022.11.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022]
Abstract
VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.
Collapse
|
4
|
Kogut M, Gong Z, Tang C, Liwo A. Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures. J Comput Chem 2021; 42:2054-2067. [PMID: 34402552 DOI: 10.1002/jcc.26736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Pseudopotentials for the chemical cross-links comprising the glutamic- and aspartic-acid side chains bridged with adipic- (ADH) or pimelic-acid hydrazide (PDH), and the lysine side chains bridged with glutaric (BS2 G) or suberic acid (BS3 ) for coarse-grained cross-link-assisted simulations were determined by canonical molecular dynamics with the Amber14sb force field. The potentials depend on the distance between side-chain ends and on side-chain orientation, this preventing from making cross-link contacts across the globule in simulations. The potentials were implemented in the UNRES coarse-grained force field and their effect on the quality of models was assessed with 11 monomeric and 1 dimeric proteins, using synthetic or experimental cross-link data. Simulations with the new potentials resulted in improvement of the generated models compared to unrestrained simulations in more instances compared to those with the statistical potentials.
Collapse
Affiliation(s)
- Mateusz Kogut
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Zhou Gong
- Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Belsom A, Rappsilber J. Anatomy of a crosslinker. Curr Opin Chem Biol 2020; 60:39-46. [PMID: 32829152 DOI: 10.1016/j.cbpa.2020.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Crosslinking mass spectrometry has become a core technology in structural biology and is expanding its reach towards systems biology. Its appeal lies in a rapid workflow, high sensitivity and the ability to provide data on proteins in complex systems, even in whole cells. The technology depends heavily on crosslinking reagents. The anatomy of crosslinkers can be modular, sometimes comprising combinations of functional groups. These groups are defined by concepts including: reaction selectivity to increase information density, enrichability to improve detection, cleavability to enhance the identification process and isotope-labelling for quantification. Here, we argue that both concepts and functional groups need more thorough experimental evaluation, so that we can show exactly how and where they are useful when applied to crosslinkers. Crosslinker design should be driven by data, not only concepts. We focus on two crosslinker concepts with large consequences for the technology, namely reactive group reaction kinetics and enrichment groups.
Collapse
Affiliation(s)
- Adam Belsom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Gong Z, Ye SX, Tang C. Tightening the Crosslinking Distance Restraints for Better Resolution of Protein Structure and Dynamics. Structure 2020; 28:1160-1167.e3. [PMID: 32763142 DOI: 10.1016/j.str.2020.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Chemical crosslinking coupled with mass spectrometry (CXMS) has been increasingly used in structural biology. CXMS distance restraints are usually applied to Cα or Cβ atoms of the crosslinked residues, with upper bounds typically over 20 Å. The incorporation of loose CXMS restraints only marginally improves the resolution of the calculated structures. Here, we present a revised format of CXMS distance restraints, which works by first modifying the crosslinked residue with a rigid extension derived from the crosslinker. With the flexible side chain explicitly represented, the reformatted restraint can be applied to the modification group instead, with an upper bound of 6 Å or less. The short distance restraint can be represented and back-calculated simply with a straight line. The use of tighter restraints not only afford better-resolved structures but also uncover protein dynamics. Together, our approach enables more information extracted from the CXMS data.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Shang-Xiang Ye
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|