1
|
Kruk D, Masiewicz E, Markiewicz R, Singh RK. Dynamics of ionic liquids by means of nuclear magnetic resonance relaxation - overview of theoretical approaches. Phys Chem Chem Phys 2024. [PMID: 39449266 DOI: 10.1039/d4cp03183k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This paper presents a comprehensive overview of the spin relaxation theory needed for exploring nuclear magnetic resonance (NMR) relaxometry to study the dynamical properties of ionic liquids. The term NMR relaxometry refers to relaxation experiments performed over a wide range of magnetic fields (resonance frequencies). In this way, dynamical processes occurring on timescales from milliseconds to nanoseconds can be studied, including translational and rotational dynamics of both types of ions (cations and anions). In order to take advantage of the remarkable experimental possibilities, appropriate theoretical models linking relaxation properties with ionic motion are needed. With the aim of providing such theoretical tools, 1H and 19F relaxation models for ionic liquids have been reviewed and their applications have been illustrated by several examples. The presented models are valid for an arbitrary magnetic field, include all relevant relaxation pathways and allow to extract detailed information about the translational and rotational dynamics of the ions. On the basis of the theoretical models, formulas allowing a straightforward determination of the translational diffusion coefficients of cations and anions from combined 1H and 19F relaxation studies have been derived and discussed in detail.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Elzbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Roksana Markiewicz
- Nanobiomedical Centre Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Rajendra Kumar Singh
- Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
2
|
Leifer N, Aurbach D, Greenbaum SG. NMR studies of lithium and sodium battery electrolytes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:1-54. [PMID: 39237252 DOI: 10.1016/j.pnmrs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.
Collapse
Affiliation(s)
- Nicole Leifer
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Doron Aurbach
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Steve G Greenbaum
- Department of Physics, Hunter College, City University of New York, New York, NY, USA.
| |
Collapse
|
3
|
Drake AD, He Y, Ladipo F, Knutson BL, Rankin SE. Effect of Pore Confinement of Ionic Liquids on Solute Diffusion within Mesoporous Silica Microparticles. J Phys Chem B 2024. [PMID: 38478906 DOI: 10.1021/acs.jpcb.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The transport properties of the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined within silica microparticles with well-ordered, accessible mesopores (5.4 or 9 nm diameter) were investigated. [BMIM][PF6] confinement was confirmed by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The transport properties of the confined IL were studied using the neutral and cationic fluorescent probes 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 6G, respectively, through fluorescence recovery after photobleaching (FRAP) in confocal microscopy. The diffusivity of DCM in 9 nm pores is 0.026 ± 0.0091 μm2/s, which is 2 orders of magnitude less than in the bulk ionic liquid. The pore size did not affect the diffusivity of DCM in unmodified silica nanopores. The diffusivity of the cationic probe is reduced by 63% relative to that of the neutral probe. Diffusivity is increased with water content, where equilibrium hydration of the system leads to a 37% increase in DCM diffusivity. The most dramatic impact on diffusivity was caused by tethering an IL-like methylimidazolium chloride group to the pores, which increased the pore hydrophobicity and resulted in 3-fold higher diffusivity of DCM compared to bare silica pores. Subsequent exchange of the chloride anion from the tethering group with PF6- decreased the diffusivity to half that of bare silica. The diffusion of probe molecules is affected most strongly by the pore wall effects on probe interactions rather than by the pore size itself, which suggests that understanding pore wall diffusion is critical to the design of nanoconfined ILs for separations, catalysis, and energy storage.
Collapse
Affiliation(s)
- Andrew D Drake
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Yuxin He
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Folami Ladipo
- Department of Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506-0055, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
4
|
Hessling J, Lange M, Schönhoff M. Confinement-enhanced Li + ion dynamics in an ionic liquid-based electrolyte in porous material. Phys Chem Chem Phys 2023; 25:23510-23518. [PMID: 37646481 DOI: 10.1039/d3cp02901h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
While Ionic Liquids (IL) are promising liquid electrolyte components for Li-ion batteries due to their high electrochemical stability and low volatility and flammability, unfavorable Lithium-anion clusters lead to poor Li+ transport properties such as low transference numbers. A confinement of ILs in nanoporous materials could overcome these problems, based on altered structural and dynamic properties of the confined ILs. We investigate the coordination and the Li+ dynamics in an IL/Li-salt mixture of 1-butyl-1-methylpyrrolidinium bis(trifluormethyl-sulfonyl)imide (Pyr14TFSA) and LiTFSA and reveal in how far the confinement has positive or negative effects on ion clustering in the electrolyte. To this end, the electrolyte is confined in mesoporous silica SBA-15 (pore diameter 8 nm or 4 nm) or the metal-organic framework (MOF) ZIF-8 (pore diameter 1.16 nm). Raman spectra elucidate the Li-anion coordination and the interaction of the ions with the walls. Temperature-dependent 7Li spin relaxation rates, analyzed within the model of Bloembergen, Purcell and Pound (BPP), allow statements on the local Li+ environment, the local Li+ dynamics and its activation. In the SBA-15 materials the Li+ coordination is unchanged with persisting Li-TFSA clusters. Furthermore, the local dynamics of Li+ is reduced upon confinement, as expected due to geometrical restrictions. At the same time, however, both structural and dynamic parameters do not show a pronounced dependence on the pore size. Surprisingly, upon confinement in ZIF-8 Li+ displays faster local dynamics and a more asymmetric environment in comparison to the bulk electrolyte. The enhanced dynamics is accompanied by a reduced coordination to TFSA-, suggesting the breakup of Li-TFSA clusters. Differences between the porous materials are attributed to the nature of the wall surface, as Raman spectra suggest that in SBA-15 the TFSA- ion is preferentially interacting with the pore walls, whereas in ZIF-8 the Pyr14+ ion is immobilized by the pore walls. These results demonstrate a strong influence of internal interfaces on IL structure and dynamics and bear potential for further tailoring ion dynamics.
Collapse
Affiliation(s)
- Janis Hessling
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| | - Martin Lange
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| |
Collapse
|
5
|
Fraenza CC, Greenbaum SG, Suarez SN. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. Int J Mol Sci 2023; 24:10373. [PMID: 37373520 PMCID: PMC10299207 DOI: 10.3390/ijms241210373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.
Collapse
Affiliation(s)
- Carla C. Fraenza
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
| | - Steve G. Greenbaum
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sophia N. Suarez
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Physics Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
6
|
Molecular Dynamics of Jelly Candies by Means of Nuclear Magnetic Resonance Relaxometry. Molecules 2023; 28:molecules28052230. [PMID: 36903475 PMCID: PMC10005792 DOI: 10.3390/molecules28052230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
1H spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10-6 s, 10-7 s and 10-8 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties. It has been shown that dynamic processes in different kinds of Haribo jelly are similar (this can be treated as a sign of their quality and authenticity) and that the fraction of confined water molecules is reduced with increasing temperature. Two groups of Vidal jelly have been identified. For the first one, the parameters (dipolar relaxation constants and correlation times) match those for Haribo jelly. For the second group including cherry jelly, considerable differences in the parameters characterizing their dynamic properties have been revealed.
Collapse
|
7
|
Wang S, Jiang Y, Hu X. Ionogel-Based Membranes for Safe Lithium/Sodium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200945. [PMID: 35362162 DOI: 10.1002/adma.202200945] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Alkali (lithium, sodium)-based second batteries are considered one of the brightest candidates for energy-storage applications in order to utilize the random and intermittent renewable energy to achieve carbon neutrality. Conventional lithium/sodium batteries containing liquid organic electrolytes are vulnerable to electrolytes leakage and even combustion, which hinders their large-scale and reliable application. All-solid-state electrolytes which are considered to have better safety have been developed in recent years. However, most of them suffer from low ionic conductivity and large interfacial resistance with the electrode. Ionogel-electrolyte membranes composed of ionic liquids and solid matrices, have attracted much attention because of their nonvolatility, nonflammability, and superior chemical and electrochemical properties. This review focuses on the most recent advances of ionogel electrolytes that sprang up with the emerging demand and progress of safe lithium/sodium batteries. The ionogel-electrolyte membranes are discussed based on the framework components and preparation methods. Their structure and properties, including ionic conductivity, mechanical strength, electrochemical stabilities, and so on, are demonstrated in combination with their applications. The current challenges and insights on the future development of ionogel electrolytes for advanced safe lithium/sodium batteries are also proposed.
Collapse
Affiliation(s)
- Sen Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yingjun Jiang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xianluo Hu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Kruk D, Masiewicz E, Kołodziejski K, Markiewicz R, Jurga S. Relative Cation-Anion Diffusion in Alkyltriethylammonium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms23115994. [PMID: 35682674 PMCID: PMC9181216 DOI: 10.3390/ijms23115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
19F Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation–anion as a relative translation diffusion coefficient. The diffusion coefficients have been compared with the corresponding cation–cation and anion–anion diffusion coefficients, revealing a correlation in the relative translation movement of the anion and the triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, and dodecyltriethylammonium cations, whereas the relative translation diffusion between the anion and the cations with the longer alkyl chains, decyltriethylammonium and hexadecyltriethylammonium, remains rather uncorrelated (correlated to a much lesser extent).
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
- Correspondence:
| | - Elżbieta Masiewicz
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
| | - Karol Kołodziejski
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland; (E.M.); (K.K.)
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (R.M.); (S.J.)
| |
Collapse
|
9
|
Yang MY, Merinov BV, Zybin SV, Goddard WA, Mok EK, Hah HJ, Han HE, Choi YC, Kim SH. Transport properties of imidazolium based ionic liquid electrolytes from molecular dynamics simulations. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Moon Young Yang
- Division of Chemistry and Chemical Engineering Materials and Process Simulation Center MC 139‐74, California Institute of Technology Pasadena California USA
| | - Boris V. Merinov
- Division of Chemistry and Chemical Engineering Materials and Process Simulation Center MC 139‐74, California Institute of Technology Pasadena California USA
| | - Sergey V. Zybin
- Division of Chemistry and Chemical Engineering Materials and Process Simulation Center MC 139‐74, California Institute of Technology Pasadena California USA
| | - William A. Goddard
- Division of Chemistry and Chemical Engineering Materials and Process Simulation Center MC 139‐74, California Institute of Technology Pasadena California USA
| | - Eun Kyung Mok
- Battery R & D, LG Chem Yuseong‐Gu Daejeon Republic of Korea
| | - Hoe Jin Hah
- Battery R & D, LG Chem Yuseong‐Gu Daejeon Republic of Korea
| | - Hyea Eun Han
- Battery R & D, LG Chem Yuseong‐Gu Daejeon Republic of Korea
| | | | - Seung Ha Kim
- Battery R & D, LG Chem Yuseong‐Gu Daejeon Republic of Korea
| |
Collapse
|
10
|
Damodaran K. Recent advances in NMR spectroscopy of ionic liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:1-27. [PMID: 35292132 DOI: 10.1016/j.pnmrs.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This review presents recent developments in the application of NMR spectroscopic techniques in the study of ionic liquids. NMR has been the primary tool not only for the structural characterization of ionic liquids, but also for the study of dynamics. The presence of a host of NMR active nuclei in ionic liquids permits widespread use of multinuclear NMR experiments. Chemical shifts and multinuclear coupling constants are used routinely for the structure elucidation of ionic liquids and of products formed by their covalent interactions with other materials. Also, the availability of a multitude of NMR techniques has facilitated the study of dynamical processes in them. These include the use of NOESY to study inter-ionic interactions, pulsed-field gradient techniques for probing transport properties, and relaxation measurements to elucidate rotational dynamics. This review will focus on the application of each of these techniques to investigate ionic liquids.
Collapse
Affiliation(s)
- Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
11
|
Relationship between Translational and Rotational Dynamics of Alkyltriethylammonium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms23031688. [PMID: 35163609 PMCID: PMC8836145 DOI: 10.3390/ijms23031688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
1H spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined. Relationships between these quantities and their dependence on the alkyl chain length were discussed in comparison to analogous properties of molecular liquids. It was shown, among other findings, that the ratio between the translational and rotational correlation times is smaller than for molecular liquids and considerably dependent on temperature. Moreover, a comparison of relative and self-diffusion coefficients indicate correlated translational dynamics of the cations.
Collapse
|
12
|
Fraenza CC, Elgammal RA, Garaga MN, Bhattacharyya S, Zawodzinski TA, Greenbaum SG. Dynamics of Glyceline and Interactions of Constituents: A Multitechnique NMR Study. J Phys Chem B 2022; 126:890-905. [DOI: 10.1021/acs.jpcb.1c09227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carla C. Fraenza
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Ramez A. Elgammal
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Mounesha N. Garaga
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Sahana Bhattacharyya
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Thomas A. Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Steven G. Greenbaum
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| |
Collapse
|
13
|
Sundari CDD, Ivansyah AL, Floweri O, Arcana IM, Iskandar F. Insights into the intermolecular interactions and temperature-concentration dependence of transport in ionic liquid-based EMI–TFSI/LiTFSI electrolytes. NEW J CHEM 2022. [DOI: 10.1039/d1nj05489a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations and MD simulations show that the EMI–TFSI/LiTFSI system is stabilized by strong nonbonded attractions, and the lithium-ion conductivity depends on the LiTFSI concentration and system temperature.
Collapse
Affiliation(s)
- Citra Deliana Dewi Sundari
- Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Bandung 40292, Indonesia
| | - Atthar Luqman Ivansyah
- Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Octia Floweri
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - I Made Arcana
- Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Ferry Iskandar
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- National Center for Sustainable Transportation Technology (NCSTT), Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
14
|
Kruk D, Jancelewicz M, Klimaszyk A, Markiewicz R, Fojud Z, Jurga S. Internal Dynamics of Ionic Liquids over a Broad Temperature Range-The Role of the Cation Structure. MATERIALS (BASEL, SWITZERLAND) 2021; 15:ma15010216. [PMID: 35009361 PMCID: PMC8746224 DOI: 10.3390/ma15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.
Collapse
Affiliation(s)
- Danuta Kruk
- Department of Physics and Biophysics, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
- Correspondence:
| | - Mariusz Jancelewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Adam Klimaszyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| | - Zbigniew Fojud
- Department of MacromoLecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland;
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (M.J.); (A.K.); (R.M.); (S.J.)
| |
Collapse
|
15
|
Lo Meo P, Terranova S, Di Vincenzo A, Chillura Martino D, Conte P. Heuristic Algorithm for the Analysis of Fast Field Cycling (FFC) NMR Dispersion Curves. Anal Chem 2021; 93:8553-8558. [PMID: 34102062 DOI: 10.1021/acs.analchem.1c01264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evaluation of nuclear magnetic relaxation dispersion (NMRD) curves obtained by the fast field cycling nuclear magnetic resonance (FFC-NMR) relaxometry technique is a valuable tool for analyzing the microscopic dynamics of condensed matter systems. However, quantitative data analysis involves several conceptual and practical issues. Moving forward from previous literature approaches, we propose a new analysis method, relying on the elaboration of the inverse integral transform of the NMRD curve. Our approach results in a true heuristic method, able to unambiguously individuate the dynamic domains in the system, thereby avoiding the possible introduction of any element of discretion. The analysis of some data sets relevant to real samples suggests the possibility that the results obtained with the heuristic method may be actually led back to some distinct physical/chemical features of the systems.
Collapse
Affiliation(s)
- Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze pad. 17, 90128 Palermo, Italy
| | - Samuele Terranova
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze pad. 17, 90128 Palermo, Italy
| | - Antonella Di Vincenzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze pad. 17, 90128 Palermo, Italy
| | - Delia Chillura Martino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze pad. 17, 90128 Palermo, Italy
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, alimentari e Forestali (SAAF), University of Palermo, v.le delle Scienze pad. 4, 90128 Palermo, Italy
| |
Collapse
|
16
|
Molecular-level insights into structure and dynamics in ionic liquids and polymer gel electrolytes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Foran G, Verdier N, Lepage D, Malveau C, Dupré N, Dollé M. Use of Solid-State NMR Spectroscopy for the Characterization of Molecular Structure and Dynamics in Solid Polymer and Hybrid Electrolytes. Polymers (Basel) 2021; 13:1207. [PMID: 33917831 PMCID: PMC8068304 DOI: 10.3390/polym13081207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
Solid-state NMR spectroscopy is an established experimental technique which is used for the characterization of structural and dynamic properties of materials in their native state. Many types of solid-state NMR experiments have been used to characterize both lithium-based and sodium-based solid polymer and polymer-ceramic hybrid electrolyte materials. This review describes several solid-state NMR experiments that are commonly employed in the analysis of these systems: pulse field gradient NMR, electrophoretic NMR, variable temperature T1 relaxation, T2 relaxation and linewidth analysis, exchange spectroscopy, cross polarization, Rotational Echo Double Resonance, and isotope enrichment. In this review, each technique is introduced with a short description of the pulse sequence, and examples of experiments that have been performed in real solid-state polymer and/or hybrid electrolyte systems are provided. The results and conclusions of these experiments are discussed to inform readers of the strengths and weaknesses of each technique when applied to polymer and hybrid electrolyte systems. It is anticipated that this review may be used to aid in the selection of solid-state NMR experiments for the analysis of these systems.
Collapse
Affiliation(s)
- Gabrielle Foran
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Nina Verdier
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - David Lepage
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Cédric Malveau
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Nicolas Dupré
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France;
| | - Mickaël Dollé
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| |
Collapse
|
18
|
Dynamics of Ionic Liquids in Confinement by Means of NMR Relaxometry-EMIM-FSI in a Silica Matrix as an Example. MATERIALS 2020; 13:ma13194351. [PMID: 33007881 PMCID: PMC7579494 DOI: 10.3390/ma13194351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
1H and 19F spin–lattice relaxation studies for 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide in bulk and mesoporous MCM-41 silica matrix confinement were performed under varying temperatures in a broad range of magnetic fields, corresponding to 1H resonance frequency from 5Hz to 30MHz.A thorough analysis of the relaxation data revealed a three-dimensional translation diffusion of the ions in the bulk liquid and two-dimensional diffusion in the vicinity of the confining walls in the confinement. Parameters describing the translation dynamics were determined and compared. The rotational motion of both kinds of ions in the confinement was described by two correlation times that might be attributed to anisotropic reorientation of these species.
Collapse
|