1
|
Feigenson GW, Huang J, Enoki TA. An Unexpected Driving Force for Lipid Order Appears in Asymmetric Lipid Bilayers. J Am Chem Soc 2023; 145:21717-21722. [PMID: 37683131 DOI: 10.1021/jacs.3c05081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An ordered phase in one leaflet of an asymmetric bilayer can induce a precisely superimposed induced order domain in the apposed leaflet. Order is induced in such simple lipid compositions as dioleoylphosphatidylcholine/cholesterol (DOPC)/chol) which is expected to be a uniform and disordered lipid mixture. Dye partitioning can be used to label and identify coexisting liquid-disordered (Ld), liquid-ordered (Lo), or gel-ordered (Lβ) molecules in a phase-separated leaflet. In the other leaflet of an asymmetric bilayer, dye partitioning also labels and identifies any induced order domains created by an Lo or gel phase domain in the apposed leaflet as well as the state of disorder of the lipid surrounding the induced ordered region. We explore a molecular level mechanism by which a disorder-prone uniform mixture of DOPC/chol = 0.8/0.2 would spontaneously separate into ordered regions coexisting with disordered regions. A redistribution of cholesterol seems to take place in the regions apposed to the ordered phase. The precision of the superposition of Lo or gel domains with their induced order domains implies a strong energy penalty that would be incurred if order/disorder interfaces were to form at the bilayer midplane. We conclude that the energy penalty for Lo/Ld or gel/Ld contact in the bilayer midplane is sufficient to drive disorderly DOPC/chol into an ordered state that reduces unfavorable order-disorder contacts at the bilayer midplane interface.
Collapse
Affiliation(s)
- Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Juyang Huang
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas 79409, United States
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Feigenson GW, Enoki TA. Nano-scale domains in the plasma membrane are like macroscopic domains in asymmetric bilayers. Biophys J 2023; 122:925-930. [PMID: 36380589 PMCID: PMC10111217 DOI: 10.1016/j.bpj.2022.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Unfavorable lipid-lipid pairwise interactions between HiTm and LowTm lipids drive liquid-disordered (Ld) + liquid-ordered (Lo) phase separation. Large size of phase domains is opposed by lipid dipole repulsions, which are more significant compared with the pairwise interactions for naturally abundant LowTm lipids such as palmitoyl oleoyl phosphatidylcholine. During the nano-to-macro domain size transition, no lipid phase transition occurs, and measured properties of Ld + Lo nanodomains are found to be essentially the same as those of macrodomains. Use of macrodomains in mixtures to model cell plasma membranes (PM) is helpful, enabling study by optical microscopy. Use of asymmetric giant unilamellar vesicles to model a PM reveals that ordered phase domains in one leaflet induce ordered domains in an otherwise uniform phase in the apposing leaflet that models a cytoplasmic leaflet. Because macro and nano phase properties are so similar, we conclude that a cell PM that has nano-scale Ld + Lo phase domains in the exoplasmic leaflet is likely to induce nano-scale ordered domains in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University - Ithaca, Ithaca, New York.
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University - Ithaca, Ithaca, New York
| |
Collapse
|
3
|
Kondrashov OV, Akimov SA. A Mechanism of Double-Membrane Vesicle Formation from Liquid-Ordered/Liquid-Disordered Phase Separated Spherical Membrane. MEMBRANES 2022; 13:25. [PMID: 36676832 PMCID: PMC9862188 DOI: 10.3390/membranes13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Genome replication of coronaviruses takes place in specific cellular compartments, in so-called double-membrane vesicles (DMVs), formed from the endoplasmic reticulum (ER). An intensive production of DMVs is induced by non-structural viral proteins. Here, we proposed a possible mechanism of the DMV formation from ER-derived spherical vesicles where liquid-ordered and liquid-disordered lipid phases coexist. These vesicles are supposed to divide into two homogeneous liquid-ordered and liquid-disordered vesicles. The formation of two spherical vesicles constituting DMV requires a mechanical work to be performed. We considered the excess energy of the boundary between the coexisting lipid phases as the main driving force behind the division of the initial vesicle. Explicitly accounting for the energy of elastic deformations and the interphase boundary energy, we analyzed a range of physical parameters where the DMV formation is possible. We concluded that this process can principally take place in a very narrow range of system parameters. The most probable diameter of DMVs formed according to the proposed mechanism appeared to be approximately 220 nm, in an agreement with the average diameter of DMVs observed in vivo. Our consideration predicts the DMV size to be strongly limited from above. The developed analysis can be utilized for the production of DMVs in model systems.
Collapse
|
4
|
Wongsirojkul N, Masuta A, Shimokawa N, Takagi M. Control of Line Tension at Phase-Separated Lipid Domain Boundaries: Monounsaturated Fatty Acids with Different Chain Lengths and Osmotic Pressure. MEMBRANES 2022; 12:membranes12080781. [PMID: 36005696 PMCID: PMC9415386 DOI: 10.3390/membranes12080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 06/01/2023]
Abstract
Line tension at phase-separated lipid domain boundaries is an important factor that governs the stability of the phase separation. We studied the control of the line tension in lipid membranes composed of dioleoylphosphocholine (DOPC), dipalmitoylphosphocholine (DPPC), and cholesterol (Chol) by the addition of the following three monounsaturated fatty acids (MUFAs) with different chain lengths: palmitoleic acid (PaA), oleic acid (OA), and eicosenoic acid (EiA). In addition, we attempted to alter the line tension by applying osmotic pressure. The phase behavior of the MUFA-containing lipid membranes in the presence and absence of osmotic stress was observed by fluorescence and confocal laser scanning microscopy. The line tension was quantitatively measured from the domain boundary fluctuation by flicker spectroscopy, and the interactions between the lipids and MUFAs were examined by differential scanning calorimetry. PaA and OA, which are shorter MUFAs, decreased the line tension, whereas EiA changed the liquid domain to a solid domain. The osmotic pressure increased the line tension, even in the presence of MUFAs. It may be possible to control the line tension by combining the chemical approach of MUFA addition and the physical approach of applying osmotic pressure.
Collapse
Affiliation(s)
| | | | | | - Masahiro Takagi
- Correspondence: (N.S.); (M.T.); Tel.: +81-761-51-1650 (M.T.)
| |
Collapse
|
5
|
Feigenson GW. On the small size of liquid-disordered + liquid-ordered nanodomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183685. [PMID: 34175299 DOI: 10.1016/j.bbamem.2021.183685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
Four-component phase diagrams reveal that Liquid-disordered + liquid-ordered (Ld + Lo) nanodomains are exclusively found adjacent to a three-phase region, and so cannot be a one-phase microemulsion. Of importance for understanding biological membranes, a small change in lipid bilayer composition can change the size of these coexisting phase domains hundreds of fold, between tens of nanometers and microns. Nanodomain diameter, measured from small angle neutron scattering, is in the range 15-35 nm, consistent with stabilization by repulsive dipole fields. Ld/Lo line tension controls the Ld + Lo domain size transition. Other than size, chemical and physical properties of the phase domains do not seem to change during the transition. Unfavorable lipid-lipid pairwise interactions, rather than phase thickness mismatch, seem to be the main reason for Ld + Lo immiscibility. Pairwise interactions of cholesterol-phospholipid seem to be favorable, whereas pairwise interactions of high-melting phospholipid with low-melting phospholipid are unfavorable. Measured Ld/Lo line tension, like the phase separation, is created mainly by unfavorable lipid-lipid pairwise interactions. Lipid dipole-dipole repulsion opposes these unfavorable lipid-lipid pairwise interactions and thus, in a sense, is the reason that nanodomains form. Bilayer physical and chemical properties measured from macroscopic domains of coexisting Ld + Lo phases should be good approximations for the properties of coexisting nanoscopic domains.
Collapse
Affiliation(s)
- Gerald W Feigenson
- Cornell University Department of Molecular Biology and Genetics, Room 201 Biotechnology Building, 215 Tower Rd. Ithaca, New York 14853, United States.
| |
Collapse
|
6
|
Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183586. [PMID: 33647248 DOI: 10.1016/j.bbamem.2021.183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase. To better understand the interleaflet interactions that influence domains, we compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, we investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.
Collapse
|
7
|
Kataoka-Hamai C, Kawakami K. Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1082-1088. [PMID: 33440115 DOI: 10.1021/acs.langmuir.0c02843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we investigate the adsorption of phase-separated GUVs on glass using fluorescence microscopy. GUVs containing liquid-ordered (Lo) and liquid-disordered (Ld) phases underwent domain sorting after adsorption. The Ld domain in the unbound region migrated to the highly curved region near the edge of the adsorbed region. Additionally, the Lo phase grew linearly along the edge of the adsorbed region, creating a thin ring-like domain. After the domain sorting event, the GUV ruptured to form a planar bilayer patch with circular-patterned domains in the initially adsorbed area. We found that domain sorting was promoted by increasing the extent of GUV deformation. These results suggest that both the Ld and Lo domains are reorganized for stabilizing the curved bilayer region in adsorbed GUVs.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
8
|
Marrink SJ, Levental I. Computational and Experimental Advances in Biomembranes: Resolving Their Complexity. J Phys Chem B 2020; 124:9975-9976. [PMID: 33176427 DOI: 10.1021/acs.jpcb.0c09401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ilya Levental
- University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
9
|
Engberg O, Bochicchio A, Brandner AF, Gupta A, Dey S, Böckmann RA, Maiti S, Huster D. Serotonin Alters the Phase Equilibrium of a Ternary Mixture of Phospholipids and Cholesterol. Front Physiol 2020; 11:578868. [PMID: 33192582 PMCID: PMC7645218 DOI: 10.3389/fphys.2020.578868] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Unsaturated and saturated phospholipids tend to laterally segregate, especially in the presence of cholesterol. Small molecules such as neurotransmitters, toxins, drugs etc. possibly modulate this lateral segregation. The small aromatic neurotransmitter serotonin (5-HT) has been found to bind to membranes. We studied the lipid structure and packing of a ternary membrane mixture consisting of palmitoyl-oleoyl-phosphatidylcholine, palmitoyl-sphingomyelin, and cholesterol at a molar ratio of 4/4/2 in the absence and in the presence of 5-HT, using a combination of solid-state 2H NMR, atomic force microscopy, and atomistic molecular dynamics (MD) simulations. Both NMR and MD report formation of a liquid ordered (L o ) and a liquid disordered (L d ) phase coexistence with small domains. Lipid exchange between the domains was fast such that single component 2H NMR spectra are detected over a wide temperature range. A drastic restructuring of the domains was induced when 5-HT is added to the membranes at a 9 mol% concentration relative to the lipids. 2H NMR spectra of all components of the mixture showed two prominent contributions indicative of molecules of the same kind residing both in the disordered and the ordered phase. Compared to the data in the absence of 5-HT, the lipid chain order in the disordered phase was further decreased in the presence of 5-HT. Likewise, addition of serotonin increased lipid chain order within the ordered phase. These characteristic lipid chain order changes were confirmed by MD simulations. The 5-HT-induced larger difference in lipid chain order results in more pronounced differences in the hydrophobic thickness of the individual membrane domains. The correspondingly enlarged hydrophobic mismatch between ordered and disordered phases is assumed to increase the line tension at the domain boundary, which drives the system into formation of larger size domains. These results not only demonstrate that small membrane binding molecules such as neurotransmitters have a profound impact on essential membrane properties. It also suggests a mechanism by which the interaction of small molecules with membranes can influence the function of membrane proteins and non-cognate receptors. Altered membrane properties may modify lateral sorting of membrane protein, membrane protein conformation, and thus influence their function as suspected for neurotransmitters, local anesthetics, and other small drug molecules.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Anna Bochicchio
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid F. Brandner
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ankur Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Simli Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|