1
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Simultaneous electro-generation/polymerization of Cu nanocluster embedded conductive poly(2,2':5',2''-terthiophene) films at micro and macro liquid/liquid interfaces. Sci Rep 2023; 13:1201. [PMID: 36681717 PMCID: PMC9867727 DOI: 10.1038/s41598-023-28391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cu nanoparticles (NPs) have been shown to be excellent electrocatalysts, particularly for CO2 reduction - a critical reaction for sequestering anthropogenic, atmospheric carbon. Herein, the micro interface between two immiscible electrolyte solutions (ITIES) is exploited for the simultaneous electropolymerization of 2,2':5',2''-terthiophene (TT) and reduction of Cu2+ to Cu nanoparticles (NPs) generating a flexible electrocatalytic composite electrode material. TT acts as an electron donor in 1,2-dichloroethane (DCE) through heterogeneous electron transfer across the water|DCE (w|DCE) interface to CuSO4 dissolved in water. The nanocomposite formation process was probed using cyclic voltammetry as well as electrochemical impedance spectroscopy (EIS). CV and EIS data show that the film forms quickly; however, the interfacial reaction is not spontaneous and does not proceed without an applied potential. At high [TT] the heterogeneous electron transfer wave was recorded voltammetrically but not at low [TT]. However, probing the edge of the polarizable potential window was found to be sufficient to initiate electrogeneration/electropolymerization. SEM and TEM were used to image and analyze the final Cu NP/poly-TT composites and it was discovered that there is a concomitant decrease in NP size with increasing [TT]. Preliminary electrocatalysis results at a nanocomposite modified large glassy carbon electrode saw a > 2 × increase in CO2 reduction currents versus an unmodified electrode. These data suggest that this strategy is a promising means of generating electrocatalytic materials for carbon capture. However, films electrosynthesized at a micro and ~ 1 mm ITIES demonstrated poor reusability.
Collapse
|
3
|
Nishi N, Kuroyama Y, Yoshida N, Yokoyama Y, Sakka T. A Water‐Free ITIES: Ionic Liquid/Oil Interface for Base Metal Nanostructure Formation – Zn Case. ChemElectroChem 2022. [DOI: 10.1002/celc.202201000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Yohei Kuroyama
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Naohiro Yoshida
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Yuko Yokoyama
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| |
Collapse
|
4
|
YAMADA H, MATSUMOTO K, KURATANI K, ARIYOSHI K, MATSUI M, MIZUHATA M. Preface for the 66th Special Feature “Novel Aspects and Approaches to Experimental Methods for Electrochemistry”. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-66113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hirohisa YAMADA
- Department of Chemical Engineering, National Institute of Technology, Nara College
| | | | - Kentaro KURATANI
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kingo ARIYOSHI
- Graduate School of Engineering, Osaka Metropolitan University
| | | | - Minoru MIZUHATA
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| |
Collapse
|
5
|
Koya I, Yokoyama Y, Sakka T, Nishi N. Formation of Au nanofiber/fullerene nanowhisker 1D/1D composites via reductive deposition at the interface between an ionic liquid and water. CHEM LETT 2022. [DOI: 10.1246/cl.220134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ippei Koya
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yuko Yokoyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
6
|
Zhang S, Baba H, Sakka T, Nishi N. Interfacial Viscosity and Ionic Reorientation Probed Using Electrochemical Surface Plasmon Resonance at the Gold Electrode Interface of Ionic Liquids. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Nishi N, Uchiyashiki J, Oda T, Hino M, Yamada NL. Overscreening Induced by Ionic Adsorption at the Ionic Liquid/Electrode Interface Detected Using Neutron Reflectometry with a Rational Material Design. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Junya Uchiyashiki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Tatsuro Oda
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581
| | - Masahiro Hino
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801
| |
Collapse
|
8
|
Ishii K, Sakka T, Nishi N. Potential dependence of the ionic structure at the ionic liquid/water interface studied using MD simulation. Phys Chem Chem Phys 2021; 23:22367-22374. [PMID: 34608475 DOI: 10.1039/d1cp02484a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure at the electrochemical liquid/liquid interface between water (W) and trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, a hydrophobic ionic liquid (IL), was studied using molecular dynamics (MD) simulation in which the interfacial potential difference was controlled. On the IL side of the IL/W interface, ionic multilayers were found in the number density distribution of IL ions whereas monolayer-thick charge accumulation was found in the charge density distribution. This suggests that the potential screening is completed within the first ionic layer and the effect of overlayers on the potential is marginal. The W side of the interface showed the diffuse electric double layer as expected, and unexpectedly unveiled a density depletion layer, indicating that the IL surface is hydrophobic enough to be repelled by water. The IL ions in the first ionic layer showed anisotropic orientation even at the potential of zero charge, in which the polar moieties were oriented to the W side and the non-polar moieties preferred parallel orientation to the interface. When an electric field is applied across the interface so that the IL ions are more accumulated, the non-polar moieties changed the parallel preference to more oriented to the IL side due to the dipolar nature of the IL ions. The ionic orientations at the IL/W interface were compared with those at other two IL interfaces, the vacuum and graphene interfaces of the IL. The parallel preference of the non-polar moieties was similar at the IL/graphene interface but different from the perpendicular orientation toward the vacuum side at the IL/vacuum interface. The comparison suggests that water behaves like a wall that repels IL ions like a solid electrode.
Collapse
Affiliation(s)
- Kosuke Ishii
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
9
|
NISHI N, MINAMI E, SAKKA T. Adsorption Properties of Alkylsulfate Ions at the Ionic Liquid/Water Interfaces: Ionic Liquid Cation Dependence. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Eiji MINAMI
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Tetsuo SAKKA
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
10
|
Koya I, Sakka T, Nishi N. Au Nanofiber/CNT 1D/1D Composites Formed Via Redox Reaction at the Ionic Liquid/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9553-9559. [PMID: 34319742 DOI: 10.1021/acs.langmuir.1c01433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Au nanofiber/carbon nanotube (CNT) 1D/1D composites and Janus-type Au/CNT composites have been prepared by utilizing the liquid/liquid interface between water (W) and a hydrophobic ionic liquid (IL) as a redox reaction site. AuCl4- in W is reduced at the IL/W interface where CNTs are adsorbed, by a reducing agent in the IL, leading to the formation of the Au/CNT composites. The Au/CNT composites are Janus-type in which Au microurchins and Au nanofibers are deposited on the W side and the IL side of the CNTs on the IL/W interface, respectively. Reversing the order of the CNT adsorption and AuCl4- reduction results in the formation of the Au nanofiber/CNT composites, which are 1D/1D metal/carbon composites.
Collapse
Affiliation(s)
- Ippei Koya
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Zhang S, Nishi N, Katakura S, Sakka T. Evaluation of static differential capacitance at the [C 4mim +][TFSA -]/electrode interface using molecular dynamics simulation combined with electrochemical surface plasmon resonance measurements. Phys Chem Chem Phys 2021; 23:13905-13917. [PMID: 34132289 DOI: 10.1039/d1cp01435h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular dynamic (MD) simulations have been performed for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C4mim+][TFSA-]), an ionic liquid (IL), on a charged graphene electrode to achieve the quantitative analysis of the static differential capacitance using the electrochemical surface plasmon resonance (ESPR). The MD simulations have provided the surface charge density on the electrode and ionic distributions in the electric double layer, both of which are indispensable for the evaluation of static differential capacitance using ESPR but are difficult to be measured by experimental techniques. This approach has allowed the quantitative analysis and explanation of the SPR angle shift in ESPR. The major contribution to the SPR angle shift is found to be the change in ionic concentrations of the first ionic layer on the electrode, owing to higher polarizabilities of ions in the first ionic layer than those in the overlayers. Moreover, the ionic orientation on the electrode and ionic multilayer structure have also been investigated in detail. The butyl group of C4mim+ in the first ionic layer is found to provide extra room for C4mim+ in the second ionic layer but exclude TFSA-, which affects the interval and regularity of ionic multilayers.
Collapse
Affiliation(s)
- Shiwei Zhang
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
12
|
Deutsch M, Magnussen OM, Haddad J, Pontoni D, Murphy BM, Ocko BM. Comment on "Bi-layering at ionic liquid surfaces: a sum - frequency generation vibrational spectroscopy - and molecular dynamics simulation-based study" by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565. Phys Chem Chem Phys 2021; 23:5020-5027. [PMID: 33595568 DOI: 10.1039/d0cp04882h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Comment raises several questions concerning the surface structure concluded in the paper referenced in the title. Specifically, that paper ignores previous experiments and simulations which demonstrate for the same ionic liquids depth-decaying, multilayered surface-normal density profiles rather than the claimed molecular mono- or bi-layers. We demonstrate that the claimed structure does not reproduce the measured X-ray reflectivity, which probes directly the surface-normal density profile. The measured reflectivities are found, however, to be well-reproduced by a multilayered density model. These results, and previous experimental and simulation results, cast severe doubt on the validity of the surface structure claimed in the paper referenced in the title.
Collapse
Affiliation(s)
- Moshe Deutsch
- Physics Department and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics and Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Julia Haddad
- Physics Department and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Diego Pontoni
- Partnership for Soft Condensed Matter (PSCM), ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Bridget M Murphy
- Institute for Experimental and Applied Physics and Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
13
|
Kuroyama Y, Nishi N, Sakka T. Electrochemical liquid-liquid interface between oil and ionic liquid for reductive deposition of metal nanostructures. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Nishi N, Yamazawa T, Sakka T, Hotta H, Ikeno T, Hanaoka K, Takahashi H. How Viscous Is the Solidlike Structure at the Interface of Ionic Liquids? A Study Using Total Internal Reflection Fluorescence Spectroscopy with a Fluorescent Molecular Probe Sensitive to High Viscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10397-10403. [PMID: 32787009 DOI: 10.1021/acs.langmuir.0c01528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming at the evaluation of the viscosity of the interfacial solidlike structure of ionic liquids (ILs), we performed total internal reflection fluorescence (TIRF) spectroscopy for N,N-diethyl-N'-phenyl-rhodamine (Ph-DER), a fluorescent probe that is sensitive to viscosity in a high-viscosity range. TIRF spectra at the glass interface of trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide (TOMAC4C4N), a hydrophobic IL, showed that the fluorescence intensity of Ph-DER increases with the decrease of the evanescence penetration depth, suggesting that there exists a high-viscosity region at the interface. In contrast, glycerol, which is a molecular liquid with a bulk viscosity similar to that of TOMAC4C4N, did not show such a fluorescence increase, supporting that the formation of a highly viscous solidlike structure at the interface is intrinsic to ILs. A model analysis suggested that the high viscous region at the glass interface of TOMAC4C4N is at least twice thicker than the ionic multilayers at the air interface, implying that the solid substrate enhances the ordering of the interfacial structure of ILs. The viscosity at the glass interface of TOMAC4C4N was found to be at least 40 times higher than that of the liquid bulk.
Collapse
Affiliation(s)
- Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Yamazawa
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Hotta
- Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Takahashi
- System Instruments Co., Ltd, 776-2, Komiya-machi, Hachioji 192-0031, Tokyo, Japan
| |
Collapse
|