1
|
Nenavath S, Duvva N, Kaswan RR, Lim GN, D'Souza F, Giribabu L. Intramolecular Photoinduced Energy and Electron Transfer Reactions in Phenanthroimidazole-Boron Dipyromethane Donor-Acceptor Dyads. J Phys Chem A 2023; 127:6779-6790. [PMID: 37540085 DOI: 10.1021/acs.jpca.3c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Donor-acceptor systems in which a donor phenanthroimidazole (PhI) is directly connected to a BODIPY acceptor (Dyad1) and separated by an ethynyl bridge between PhI and BODIPY (Dyad2) have been designed, synthesized, and characterized by various spectroscopic and electrochemical techniques. Optical absorption and 1H NMR characteristics of both dyads with those of constituent individuals suggest that there exists a minimum π-π interaction between phenanthroimidazole and BODIPY. Quenched emission of both the dyads was observed when excited either at phenthaoimidazole absorption maxima or at BODIPY absorption maxima in all three investigated solvents. The detailed spectral analysis provided evidence for an intramolecular photoinduced excitation energy transfer (PEnT) from the singlet excited state of phenanthroimidazole to BODIPY and photoinduced electron transfer (PET) from the ground state of phenanthroimidazole to BODIPY. Transient absorption studies suggest that charge-separated species (PhI•+ - BODIPY•-) are generated at a rate constant of (1.16 ± 0.01) × 108 s-1 for the dyads Dyad1 and (5.15 ± 0.03) × 108 s-1 and for Dyad2 whereas energy transfer rate constants were much higher and were on the order of (1.1 ± 0.02) × 1010 s-1 and (1.6 ± 0.02) × 1010 s-1 for Dyad1 and Dyad2, respectively, signifying their usefulness in light energy harvesting applications.
Collapse
Affiliation(s)
- Swathi Nenavath
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naresh Duvva
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ram R Kaswan
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Gary N Lim
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ishizuka T, Grover N, Kingsbury CJ, Kotani H, Senge MO, Kojima T. Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chem Soc Rev 2022; 51:7560-7630. [PMID: 35959748 DOI: 10.1039/d2cs00391k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are variously substituted tetrapyrrolic macrocycles, with wide-ranging biological and chemical applications derived from metal chelation in the core and the 18π aromatic surface. Under suitable conditions, the porphyrin framework can deform significantly from regular planar shape, owing to steric overload on the porphyrin periphery or steric repulsion in the core, among other structure modulation strategies. Adopting this nonplanar porphyrin architecture allows guest molecules to interact directly with an exposed core, with guest-responsive and photoactive electronic states of the porphyrin allowing energy, information, atom and electron transfer within and between these species. This functionality can be incorporated and tuned by decoration of functional groups and electronic modifications, with individual deformation profiles adapted to specific key sensing and catalysis applications. Nonplanar porphyrins are assisting breakthroughs in molecular recognition, organo- and photoredox catalysis; simultaneously bio-inspired and distinctly synthetic, these molecules offer a new dimension in shape-responsive host-guest chemistry. In this review, we have summarized the synthetic methods and design aspects of nonplanar porphyrin formation, key properties, structure and functionality of the nonplanar aromatic framework, and the scope and utility of this emerging class towards outstanding scientific, industrial and environmental issues.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenbergstrasse 2a, 85748 Garching, Germany.
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
3
|
Osterloh WR, Fang Y, Ou Z, Kadish KM. Spectroelectrochemical one-electron reduction product of (TPP)Zn in nonaqueous media? Not always the expected porphyrin π-anion radical. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Satoh Y, Fujita Y, Muramatsu N, Furukawa K, Ikoma T, Minoura M, Nakano H, Matano Y. Synthesis, Optical Properties, and Electrochemical Behavior of 5,10,15,20-Tetraaryl-5,15-diazaporphyrin-Amine Hybrids. Chempluschem 2021; 86:1476-1486. [PMID: 34669265 DOI: 10.1002/cplu.202100429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/09/2021] [Indexed: 11/07/2022]
Abstract
This work reports a series of covalently linked hybrids comprising 5,10,15,20-tetraaryl-5,15-diazaporphyrinoids (M-TADAP; M = Ni, Zn, Cu) and amines. M-TADAP-amine hybrids were prepared via the metal-templated cyclization of the corresponding metal(II)-dipyrrin complexes and redox reactions on the DAP unit. In the UV/vis/near-IR absorption spectra of the hybrids containing an 18π-electron DAP ring, broad charge-transfer bands were observed, reflecting the electron-donating property of the para-aminophenyl groups and the electron-accepting property of the 18π TADAP dication. The electrochemical behavior of the M-TADAP-amine hybrids was strongly dependent on the structure of the peripheral amine units. Further electrochemical oxidation of the hybrids bearing N-Ph groups conceivably generated amine-centered radicals, which sequentially underwent irreversible coupling to form benzidine-linked M-TADAP polymer films. The Ni-TADAP-benzidine polymer exhibited the electric conductivity of 1×10-3 S m-1 .
Collapse
Affiliation(s)
- Yuna Satoh
- Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Yutaro Fujita
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Naoya Muramatsu
- Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities, Institute for Research Promotion, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshihiro Matano
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|