1
|
Wang J, Zhu R, Zou J, Liu H, Meng H, Zhen Z, Li W, Wang Z, Chen H, Pu Y, Weng Y. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. J Chem Phys 2024; 161:085101. [PMID: 39171718 DOI: 10.1063/5.0222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phycocyanin 620 (PC620) is the outermost light-harvesting complex in phycobilisome of cyanobacteria, engaged in light collection and energy transfer to the core antenna, allophycocyanin. Recently, long-lived exciton-vibrational coherences have been observed in allophycocyanin, accounting for the coherent energy transfer [Zhu et al., Nat. Commun. 15, 3171 (2024)]. PC620 has a nearly identical spatial location of three α84-β84 phycocyanobilin pigment pairs to those in allophycocyanin, inferring an existence of possible coherent energy transfer pathways. However, whether PC620 undergoes coherent or incoherent energy transfer remains debated. Furthermore, accurate determination of energy transfer rates in PC620 is still necessary owing to the spectral overlap and broadening in conventional time-resolved spectroscopic measurements. In this work, the energy transfer process within PC620 was directly resolved by polarization-controlled two dimensional electronic spectroscopy (2DES) and global analysis. The results show that the energy transfer from α84 to the adjacent β84 has a lifetime constant of 400 fs, from β155 to β84 of 6-8 ps, and from β155 to α84 of 66 ps, fully conforming to the Förster resonance energy transfer mechanism. The circular dichroism spectrum also reveals that the α84-β84 pigment pair does not form excitonic dimer, and the observed oscillatory signals are confirmed to be vibrational coherence, excluding the exciton-vibrational coupling. Nodal line slope analysis of 2DES further reveals that all the vibrational modes participate in the energy dissipation of the excited states. Our results consolidate that the ultrafast energy transfer process in PC620 is incoherent, where the twisted conformation of α84 is suggested as the main cause for preventing the formation of α84-β84 excitonic dimer in contrast to allophycocyanin.
Collapse
Affiliation(s)
- Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiading Zou
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hanting Meng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, People's Republic of China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Myers CA, Lu SY, Shedge S, Pyuskulyan A, Donahoe K, Khanna A, Shi L, Isborn CM. Axial H-Bonding Solvent Controls Inhomogeneous Spectral Broadening, While Peripheral H-Bonding Solvent Controls Vibronic Broadening: Cresyl Violet in Methanol. J Phys Chem B 2024; 128:5685-5699. [PMID: 38832562 DOI: 10.1021/acs.jpcb.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The dynamics of the nuclei of both a chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore-solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore-solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both force field and ab initio molecular dynamics trajectories along with the inclusion of only certain solvent molecules in the excited-state calculations, we determine that the methanol molecules axial to the chromophore are responsible for the majority of inhomogeneous broadening, with a single methanol molecule that forms an axial hydrogen bond dominating the response. The strong peripheral hydrogen bonds do not contribute to spectral broadening, as they are very stable throughout the dynamics and do not lead to increased energy-gap fluctuations. We also find that treating the strong peripheral hydrogen bonds as molecular mechanical point charges during the molecular dynamics simulation underestimates the vibronic coupling. Including these peripheral hydrogen bonding methanol molecules in the quantum-mechanical region in a geometry optimization increases the vibronic coupling, suggesting that a more advanced treatment of these strongly interacting solvent molecules during the molecular dynamics trajectory may be necessary to capture the full vibronic spectral broadening.
Collapse
Affiliation(s)
- Christopher A Myers
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Shao-Yu Lu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Sapana Shedge
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Arthur Pyuskulyan
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Katherine Donahoe
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Ajay Khanna
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
3
|
Barclay MS, Wright ND, Cavanaugh P, Pensack RD, Martin EW, Turner DB. Ultrabroadband two-dimensional electronic spectroscopy in the pump-probe geometry using conventional optics. OPTICS LETTERS 2024; 49:2065-2068. [PMID: 38621077 DOI: 10.1364/ol.519387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
We report ultrabroadband two-dimensional electronic spectroscopy (2D ES) measurements obtained in the pump-probe geometry using conventional optics. A phase-stabilized Michelson interferometer provides the pump-pulse delay interval, τ1, necessary to obtain the excitation-frequency dimension. Spectral resolution of the probe beam provides the detection-frequency dimension, ω3. The interferometer incorporates active phase stabilization via a piezo stage and feedback from interference of a continuous-wave reference laser detected in quadrature. To demonstrate the method, we measured a well-characterized laser dye sample and obtained the known peak structure. The vibronic peaks are modulated as a function of the waiting time, τ2, by vibrational wave packets. The interferometer simplifies ultrabroadband 2D ES measurements and analysis.
Collapse
|
4
|
Zhu R, Li W, Zhen Z, Zou J, Liao G, Wang J, Wang Z, Chen H, Qin S, Weng Y. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat Commun 2024; 15:3171. [PMID: 38609379 PMCID: PMC11015008 DOI: 10.1038/s41467-024-47560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.
Collapse
Affiliation(s)
- Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
| | - Jiading Zou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guohong Liao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China.
| |
Collapse
|
5
|
Bressan G, Green D, Jones GA, Heisler IA, Meech SR. Two-Dimensional Electronic Spectroscopy Resolves Relative Excited-State Displacements. J Phys Chem Lett 2024; 15:2876-2884. [PMID: 38447068 PMCID: PMC10945572 DOI: 10.1021/acs.jpclett.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 ← S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn ← S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
Collapse
Affiliation(s)
- Giovanni Bressan
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Dale Green
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Garth A. Jones
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Ismael A. Heisler
- Instituto
de Fisica, Universidade Federal do Rio Grande
do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R. Meech
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| |
Collapse
|
6
|
Liu L, Li S, Zhang N, Shi Q, Liu K, Liu T, Huang Z, Ding L, Fang Y. Comparative Observation of Distinct Dynamic Stokes Shifts in Diaryl BODIPY Triads with Broadband Two-Photon Absorption. J Phys Chem B 2023; 127:10171-10178. [PMID: 37967951 DOI: 10.1021/acs.jpcb.3c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Time-resolved evolution of excited states in the twist-conjugated chromophores is of great fundamental interest for photoluminescent applications. The four diaryl BODIPY triads modified with diverse end-cappers at 2,6-positions were investigated properly, and considerable two-photon absorption capabilities in the first biological spectral window were obtained. Fast relaxations from the initially twisted conformation to the planarized conformation in the excited state were resolved spectrally and kinetically, accompanied by the discernible phenomenon of the fluorescence dynamic Stokes shift (DSS). Along with increasing electron donating capabilities and solvent polarities, the characteristics of structural rearrangement and intramolecular charge transfer have been estimated by enhanced DSS behaviors. Especially, the blue-shifted DSS was rationalized as the sequence conversion between the planarized state and the twisted charge transfer state. A molecular-level picture for relaxation pathways in different polarities was depicted and supported by the theoretical simulations. Significant and fast structural motions in this work contribute to the excited-state dynamics and rational development of versatile BODIPY chromophores.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhiyan Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
7
|
Lee A, Son M, Deegbey M, Woodhouse MD, Hart SM, Beissel HF, Cesana PT, Jakubikova E, McCusker JK, Schlau-Cohen GS. Observation of parallel intersystem crossing and charge transfer-state dynamics in [Fe(bpy) 3] 2+ from ultrafast 2D electronic spectroscopy. Chem Sci 2023; 14:13140-13150. [PMID: 38023502 PMCID: PMC10664481 DOI: 10.1039/d3sc02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Matthew D Woodhouse
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Hayden F Beissel
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Paul T Cesana
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - James K McCusker
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | | |
Collapse
|
8
|
Humphries BS, Green D, Borgh MO, Jones GA. Phonon Signatures in Photon Correlations. PHYSICAL REVIEW LETTERS 2023; 131:143601. [PMID: 37862651 DOI: 10.1103/physrevlett.131.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023]
Abstract
We show that the second-order, two-time correlation functions for phonons and photons emitted from a vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect), respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of detection giving insight into how phonon dynamics influences the emission of light. This work offers new opportunities to investigate quantum effects in condensed-phase molecular systems.
Collapse
Affiliation(s)
- Ben S Humphries
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dale Green
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Magnus O Borgh
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
9
|
Barclay MS, Chowdhury AU, Biaggne A, Huff JS, Wright ND, Davis PH, Li L, Knowlton WB, Yurke B, Pensack RD, Turner DB. Probing DNA structural heterogeneity by identifying conformational subensembles of a bicovalently bound cyanine dye. J Chem Phys 2023; 158:035101. [PMID: 36681650 DOI: 10.1063/5.0131795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA-Cy5), double-stranded DNA (dsDNA-Cy5), and Holliday junction DNA (HJ-DNA-Cy5). A line shape analysis of the 2D spectra reveals a strong excitation-emission correlation present in only the dsDNA-Cy5 complex, which is a signature of inhomogeneous broadening. Molecular dynamics simulations support the conclusion that this inhomogeneous broadening arises from a nearly degenerate conformer found only in the dsDNA-Cy5 complex. These insights will support future studies on DNA's structural heterogeneity.
Collapse
Affiliation(s)
- Matthew S Barclay
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Azhad U Chowdhury
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Austin Biaggne
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Jonathan S Huff
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Nicholas D Wright
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul H Davis
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Lan Li
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Bernard Yurke
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Ryan D Pensack
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
10
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
11
|
Lu SY, Zuehlsdorff TJ, Hong H, Aguirre VP, Isborn CM, Shi L. The Influence of Electronic Polarization on Nonlinear Optical Spectroscopy. J Phys Chem B 2021; 125:12214-12227. [PMID: 34726915 DOI: 10.1021/acs.jpcb.1c05914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The environment surrounding a chromophore can dramatically affect the energy absorption and relaxation process, as manifested in optical spectra. Simulations of nonlinear optical spectroscopy, such as two-dimensional electronic spectroscopy (2DES) and transient absorption (TA), will be influenced by the computational model of the environment. We here compare a fixed point charge molecular mechanics model and a quantum mechanical (QM) model of the environment in computed 2DES and TA spectra of Nile red in water and the chromophore of photoactive yellow protein (PYP) in water and protein environments. In addition to simulating these nonlinear optical spectra, we directly juxtapose the computed excitation energy correlation function to the dynamic Stokes shift function often used to analyze environment dynamics. Overall, we find that for the three systems studied here the mutual electronic polarization provided by the QM environment manifests in broader 2DES signals, as well as a larger reorganization energy and a larger static Stokes shift due to stronger coupling between the chromophore and the environment.
Collapse
Affiliation(s)
- Shao-Yu Lu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hanbo Hong
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Vincent P Aguirre
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
12
|
Moya R, Kondo T, Norris AC, Schlau-Cohen GS. Spectrally-tunable femtosecond single-molecule pump-probe spectroscopy. OPTICS EXPRESS 2021; 29:28246-28256. [PMID: 34614960 PMCID: PMC8687097 DOI: 10.1364/oe.432995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 05/27/2023]
Abstract
Single-molecule spectroscopy has been extensively used to investigate heterogeneity in static and dynamic behaviors on millisecond and second timescales. More recently, single-molecule pump-probe spectroscopy emerged as a method to access heterogeneity on the femtosecond and picosecond timescales. Here, we develop a single-molecule pump-probe apparatus that is easily tunable across the visible region and demonstrate its utility on the widely-used fluorescent dye, Atto647N. A spectrally-independent, bimodal distribution of energetic relaxation time constants is found, where one peak corresponds to electronic dephasing (∼ 100 fs) and the other to intravibrational relaxation (∼ 300 fs). The bimodal nature indicates that relaxation within each individual molecule is dominated by only one of these processes. Both peaks of the distribution are narrow, suggesting little heterogeneity is present for either process. As illustrated here, spectrally-tunable single-molecule pump-probe spectroscopy will enable investigation of the heterogeneity in a wide range of biological and material systems.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Life Science and Technology, Tokyo Institute of Technology, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Meech S. Virtual Issue on Ultrafast Spectroscopy. J Phys Chem B 2021; 125:6037-6039. [PMID: 34134490 DOI: 10.1021/acs.jpcb.1c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steve Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K
| |
Collapse
|
14
|
Weakly RB, Gaynor JD, Khalil M. Multimode two-dimensional vibronic spectroscopy. II. Simulating and extracting vibronic coupling parameters from polarization-selective spectra. J Chem Phys 2021; 154:184202. [PMID: 34241007 DOI: 10.1063/5.0047727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.
Collapse
Affiliation(s)
- Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|