1
|
Hei B, Tardiff JC, Schwartz SD. Human cardiac β-myosin powerstroke energetics: Thin filament, Pi displacement, and mutation effects. Biophys J 2024; 123:3133-3142. [PMID: 39001604 PMCID: PMC11427785 DOI: 10.1016/j.bpj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
The powerstroke of human cardiac β-myosin is an important stage of the cross-bridge cycle that generates force for muscle contraction. However, the starting structure of this process has never been resolved, and the relative timing of the powerstroke and inorganic phosphate (Pi) release is still controversial. In this study, we generated an atomistic model of myosin on the thin filament and utilized metadynamics simulations to predict the absent starting structure of the powerstroke. We demonstrated that the displacement of Pi from the active site during the powerstroke is likely necessary, reducing the energy barrier of the conformation change. The effects of the presence of the thin filament, the hypertrophic cardiomyopathy mutation R712L, and the binding of mavacamten on the powerstroke process were also investigated.
Collapse
Affiliation(s)
- Bai Hei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona.
| |
Collapse
|
2
|
Chakraborti A, Tardiff JC, Schwartz SD. Myosin-Catalyzed ATP Hydrolysis in the Presence of Disease-Causing Mutations: Mavacamten as a Way to Repair Mechanism. J Phys Chem B 2024; 128:4716-4727. [PMID: 38708944 PMCID: PMC11103257 DOI: 10.1021/acs.jpcb.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac β-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac β-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Blanc FEC, Houdusse A, Cecchini M. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. PLoS Comput Biol 2024; 20:e1012005. [PMID: 38662764 PMCID: PMC11086841 DOI: 10.1371/journal.pcbi.1012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Akter F, Ochala J, Fornili A. Binding pocket dynamics along the recovery stroke of human β-cardiac myosin. PLoS Comput Biol 2023; 19:e1011099. [PMID: 37200380 DOI: 10.1371/journal.pcbi.1011099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human β-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.
Collapse
Affiliation(s)
- Fariha Akter
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, København N, Denmark
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Chakraborti A, Tardiff JC, Schwartz SD. Insights into the Mechanism of the Cardiac Drug Omecamtiv Mecarbil─A Computational Study. J Phys Chem B 2022; 126:10069-10082. [PMID: 36448224 PMCID: PMC9830884 DOI: 10.1021/acs.jpcb.2c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Omecamtiv mecarbil (OM) is a positive inotrope that is thought to bind directly to an allosteric site of the β-cardiac myosin. The drug is under investigation for the treatment of systolic heart failure. The drug is classified as a cardiac myosin modulator and has been observed to affect multiple vital steps of the cross-bridge cycle including the recovery stroke and the chemical step. We explored the free-energy surface of the recovery stroke of the human cardiac β-myosin in the presence of OM to determine its influence on this process. We also investigated the effects of OM on the recovery stroke in the presence of genetic cardiomyopathic mutations R712L, F764L, and P710R using metadynamics. We also utilized the method of transition path sampling to generate an unbiased ensemble of reactive trajectories for the ATP hydrolysis step in the presence of OM that were able to provide insight into the differences observed due to OM in the dynamics and mechanism of the decomposition of ATP to ADP and HPO42-, a central part of the power generation in cardiac muscle. We studied chemistry in the presence of the same three mutations to further elucidate the effect of OM, and its use in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Mason AB, Tardiff JC, Schwartz SD. Free-Energy Surfaces of Two Cardiac Thin Filament Conformational Changes during Muscle Contraction. J Phys Chem B 2022; 126:3844-3851. [PMID: 35584206 DOI: 10.1021/acs.jpcb.2c01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin core is an important regulatory complex in cardiac sarcomeres. Contraction is initiated by a calcium ion binding to cardiac troponin C (cTnC), initiating a conformational shift within the protein, altering its interactions with cardiac troponin I (cTnI). The change in cTnC-cTnI interactions prompts the C-terminal domain of cTnI to dissociate from actin, allowing tropomyosin to reveal myosin-binding sites on actin. Each of the concerted movements in the cardiac thin filament (CTF) is crucial for allowing the contraction of cardiomyocytes, yet little is known about the free energy associated with each transition, which is vital for understanding contraction on a molecular level. Using metadynamics, we calculated the free-energy surface of two transitions in the CTF: cTnC opening in the presence and absence of Ca2+ and cTnI dissociating from actin with both open and closed cTnC. These results not only provide the free-energy surface of the transitions but will also be shown to determine if the order of transitions in the contraction cycle is important. From our calculations, we found that the calcium ion helps stabilize the open conformation of cTnC and that the C-terminus of cTnI is stabilized by cTnC in the open conformation when dissociating from the actin surface.
Collapse
Affiliation(s)
- Allison B Mason
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Guo X, Cheng B. Clinical Effects of Acupuncture for Stroke Patients Recovery. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9962421. [PMID: 35222902 PMCID: PMC8872684 DOI: 10.1155/2022/9962421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Stroke is assumed as one of the common cerebrovascular diseases that endangers human health and life. Its incidence and mortality rates are high, while survivors (50% to 70%) suffer from different degrees of disability. Hemiplegia is a common disability after stroke, mainly manifested as muscle weakness of the affected side, limb spasm, and limited activity, which severely impacts a patient's daily life. There are various rehabilitation methods for stroke hemiplegia, including modern rehabilitation medicine, motor therapy, acupuncture, and rehabilitation robot. The cost and effect of different rehabilitation methods are not the same. It is the focus to find an economical and effective rehabilitation method. In this paper, 128 stroke patients aged 41 to 73 hospitalized between January 2019 and January 2021 were analyzed. The intervention group used standard physical therapy and traditional acupuncture therapy, and the control group only used standard physical therapy. We used RStudio 1.1.419 (RStudio Corporation) for analysis. Experimental results show that the short-term efficacy of the intervention group is better than that of the control group. The intervention group was better than the control group in recovery from injury during rehabilitation, degree of muscle spasm, self-care ability in daily life, and overall degree of damage. In the long-term efficacy analysis, we can see that with the increase in the number of acupuncture, the efficacy of the intervention group is still better than that of the control group. Compared with physical rehabilitation alone, acupuncture has better short-term, and long-term clinical effects for stroke patients improves motor dysfunction and improves the quality of life and independence of stroke patients. With the increase in the number of acupuncture treatments, the patient's rehabilitation effect will be better.
Collapse
Affiliation(s)
- Xia Guo
- Rehabilitation Department of Traditional Chinese Medicine, Hanyang Hospital of Wuhan University of Science and Technology, Wuhan 430050, China
| | - Bingjie Cheng
- Traditional Chinese Medicine Department, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China
| |
Collapse
|
8
|
Mason AB, Lynn ML, Baldo AP, Deranek AE, Tardiff JC, Schwartz SD. Computational and biophysical determination of pathogenicity of variants of unknown significance in cardiac thin filament. JCI Insight 2021; 6:154350. [PMID: 34699384 PMCID: PMC8675185 DOI: 10.1172/jci.insight.154350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Point mutations within sarcomeric proteins have been associated with altered function and cardiomyopathy development. Difficulties remain, however, in establishing the pathogenic potential of individual mutations, often limiting the use of genotype in management of affected families. To directly address this challenge, we utilized our all-atom computational model of the human full cardiac thin filament (CTF) to predict how sequence substitutions in CTF proteins might affect structure and dynamics on an atomistic level. Utilizing molecular dynamics calculations, we simulated 21 well-defined genetic pathogenic cardiac troponin T and tropomyosin variants to establish a baseline of pathogenic changes induced in computational observables. Computational results were verified via differential scanning calorimetry on a subset of variants to develop an experimental correlation. Calculations were performed on 9 independent variants of unknown significance (VUS), and results were compared with pathogenic variants to identify high-resolution pathogenic signatures. Results for VUS were compared with the baseline set to determine induced structural and dynamic changes, and potential variant reclassifications were proposed. This unbiased, high-resolution computational methodology can provide unique structural and dynamic information that can be incorporated into existing analyses to facilitate classification both for de novo variants and those where established approaches have provided conflicting information.
Collapse
Affiliation(s)
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
9
|
Chakraborti A, Baldo AP, Tardiff JC, Schwartz SD. Investigation of the Recovery Stroke and ATP Hydrolysis and Changes Caused Due to the Cardiomyopathic Point Mutations in Human Cardiac β Myosin. J Phys Chem B 2021; 125:6513-6521. [PMID: 34105970 DOI: 10.1021/acs.jpcb.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cardiac β myosin undergoes the cross-bridge cycle as part of the force-generating mechanism of cardiac muscle. The recovery stroke is considered one of the key steps of the kinetic cycle as it is the conformational rearrangement required to position the active site residues for hydrolysis of ATP and interaction with actin. We explored the free-energy surface of the transition and investigated the effect of the genetic cardiomyopathy causing mutations R453C, I457T, and I467T on this step using metadynamics. This work extends previous studies on Dictyostelium myosin II with engineered mutations. Here, like previously, we generated an unbiased thermodynamic ensemble of reactive trajectories for the chemical step using transition path sampling. Our methodologies were able to predict the changes to the dynamics of the recovery stroke as well as predict the pathway of breakdown of ATP to ADP and HPO42- with the stabilization of the metaphosphate intermediate. We also observed clear differences between the Dictyostelium myosin II and human cardiac β myosin for ATP hydrolysis as well as predict the effect of the mutation I467T on the chemical step.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Abstract
Quantum-mechanically driven charge polarization and charge transfer are ubiquitous in biomolecular systems, controlling reaction rates, allosteric interactions, ligand-protein binding, membrane transport, and dynamically driven structural transformations. Molecular dynamics (MD) simulations of these processes require quantum mechanical (QM) information in order to accurately describe their reactive dynamics. However, current techniques-empirical force fields, subsystem approaches, ab initio MD, and machine learning-vary in their ability to achieve a consistent chemical description across multiple atom types, and at scale. Here we present a physics-based, atomistic force field, the ensemble DFT charge-transfer embedded-atom method, in which QM forces are described at a uniform level of theory across all atoms, avoiding the need for explicit solution of the Schrödinger equation or large, precomputed training data sets. Coupling between the electronic and atomistic length scales is effected through an ensemble density functional theory formulation of the embedded-atom method originally developed for elemental materials. Charge transfer is expressed in terms of ensembles of ionic state basis densities of individual atoms, and charge polarization, in terms of atomic excited-state basis densities. This provides a highly compact yet general representation of the force field, encompassing both local and system-wide effects. Charge rearrangement is realized through the evolution of ensemble weights, adjusted at each dynamical time step via chemical potential equalization.
Collapse
Affiliation(s)
- Susan R Atlas
- Department of Chemistry and Chemical Biology, Department of Physics and Astronomy, and Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|