1
|
Green FJ, Hasan MI. Kinetic processes of interfacial transport of reactive species across plasma-water interfaces: the effect of temperature. Phys Chem Chem Phys 2025; 27:2218-2231. [PMID: 39791139 DOI: 10.1039/d4cp04272g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This work quantifies, through use of molecular dynamics (MD) simulations, the kinetic rates of physical surface processes occurring at a plasma-water interface. The probabilities of adsorption, absorption, desorption and scattering were computed for O3, N2O, NO2, NO, OH, H2O2, HNO2, HNO3, and N2O5 as they interact with the interface at three water temperatures: 298 K, 323 K, and 348 K. Species are categorised into the short-residence group (O3, N2O, NO2, and NO) and the long-residence group (OH, H2O2, HNO2, HNO3, and N2O5) based on their mean surface residence time. It is reported that the most probable process for the short-residence group is desorption, which limits their characteristic residence time at the interface to less than 100 ps, while the long-residence species experience a mixture of absorption and desorption, with a characteristic residence time exceeding 200 ps for many species in this group. With increasing water temperature, a universal decline in characteristic surface residence time is observed. It is found that the short-residence group experience a reduction in probability of desorption in favour of scattering, whereas the long-residence group experience a reduction in probability of adsorption in favour of absorption and desorption. The data reported in this work facilitate the development of a basic surface kinetic model, which was used to find that tuning the plasma toward the production of HNO3 will result in an increase in the rate of uptake of reactive nitrogen species by a factor of 250%.
Collapse
Affiliation(s)
- Frederick J Green
- Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, L69 3GJ, UK.
| | - Mohammad I Hasan
- Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, L69 3GJ, UK.
| |
Collapse
|
2
|
Sundaram V, Baumeier B. Quantum-Quantum and Quantum-Quantum-Classical Schemes for Near-Gap Excitations with Projection-Based-Embedded GW-Bethe-Salpeter Equation. J Chem Theory Comput 2024; 20:5451-5465. [PMID: 38916411 PMCID: PMC11238541 DOI: 10.1021/acs.jctc.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We present quantum-quantum and quantum-quantum-classical schemes based on many-body Green's functions theory in the GW approximation with the Bethe-Salpeter equation (GW-BSE) employing projection-based-embedding (PbE). Such approaches allow defining active and inactive subsystems of larger, complex molecular systems, with only the smaller active subsystem being explicitly treated by GW-BSE offering significant computational advantages. However, as PbE can modify the single-particle states in the Kohn-Sham (KS) ground state calculation and screening effects from the inactive region are not automatically included in GW-BSE, results from such PbE-GW-BSE calculations can deviate from a full-system reference. Here, we scrutinize in detail, e.g., the individual and combined effects of different choices of active regions, the influence of omitting the screening from the inactive region, and strategies for basis set truncation on frontier orbital and near-gap electron-hole excitation energies. As prototypical systems, we consider a diketopyrrolopyrrole bicyclic ring including side-chains, a polarity-sensitive dye (prodan) in aqueous environment, and a π-stacked dimer of benzene and tetracyanoethylene in water, respectively, covering a variety of excitation characters in molecular systems with complex chemical environments and photoinduced processes. Our results suggest that to obtain agreement of approximately 0.1 eV between near-gap excitation energies from embedded and full calculations, the active region should be chosen based on the Mulliken population of the full highest-occupied molecular orbital and that careful benchmarking should be done on the KS level before the actual GW-BSE steps when basis set truncation is used. We find that PbE-GW-BSE offers significant reductions in computation times and, more importantly, memory requirements, making calculations for considerably larger systems tractable.
Collapse
Affiliation(s)
- Vivek Sundaram
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Schmid F. Virtual Issue on Polymers: Recent Advances from a Physical Chemistry Perspective. J Phys Chem B 2022; 126:8359-8361. [PMID: 36300292 DOI: 10.1021/acs.jpcb.2c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
4
|
Sundaram V, Lyulin AV, Baumeier B. Effect of Solvent Removal Rate and Annealing on the Interface Properties in a Blend of a Diketopyrrolopyrrole-Based Polymer with Fullerene. J Phys Chem B 2022; 126:7445-7453. [PMID: 36122390 PMCID: PMC9527757 DOI: 10.1021/acs.jpcb.2c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We study the effect of solvent-free annealing and explicit
solvent
evaporation protocols in classical molecular dynamics simulations
on the interface properties of a blend of a diketopyrrolopyrrole (DPP)
polymer with conjugated substituents (DPP2Py2T) and PCBM[60]. We specifically
analyze the intramolecular segmental mobility of the different polymer
building blocks as well as intermolecular radial and angular distribution
functions between donor and acceptor. The annealing simulations reveal
an increase of the glass-transition temperature of 45 K in the polymer–fullerene
blend compared to that of pure DPP2Py2T. Our results show that the
effective solvent evaporation rates at room temperature only have
a minor influence on the segmental mobility and intermolecular orientation,
characterized in all cases by a preferential arrangement of PCBM[60]
close to the electron-donating substituents in DPP2Py2T. In contrast,
solvent-free annealing from a liquid yields clustering of the fullerene
close to the electron-withdrawing DPP, generally considered to be
detrimental for application in organic solar cells. We find that the
difference can be attributed to differences in the behavior of 2-hexyldecyl
side-chains, which collapse toward DPP when solvent is explicitly
removed, thereby blocking access of PCBM[60].
Collapse
Affiliation(s)
- Vivek Sundaram
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Soft Matter and Biological Physics group, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alexey V Lyulin
- Soft Matter and Biological Physics group, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Siemons N, Pearce D, Cendra C, Yu H, Tuladhar SM, Hallani RK, Sheelamanthula R, LeCroy GS, Siemons L, White AJP, McCulloch I, Salleo A, Frost JM, Giovannitti A, Nelson J. Impact of Side-Chain Hydrophilicity on Packing, Swelling, and Ion Interactions in Oxy-Bithiophene Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204258. [PMID: 35946142 DOI: 10.1002/adma.202204258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Exchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid-state packing and polymer-electrolyte interactions being poorly understood. Presented here is a molecular dynamics (MD) force field for modeling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals. MD simulations, coupled with X-ray diffraction (XRD), show that alkoxylated polythiophenes will pack with a "tilted stack" and straight interdigitating side chains, whilst their glycolated counterpart will pack with a "deflected stack" and an s-bend side-chain configuration. MD simulations reveal water penetration pathways into the alkoxylated and glycolated crystals-through the π-stack and through the lamellar stack respectively. Finally, the two distinct ways triethylene glycol polymers can bind to cations are revealed, showing the formation of a metastable single bound state, or an energetically deep double bound state, both with a strong side-chain length dependence. The minimum energy pathways for the formation of the chelates are identified, showing the physical process through which cations can bind to one or two side chains of a glycolated polythiophene, with consequences for ion transport in bithiophene semiconductors.
Collapse
Affiliation(s)
- Nicholas Siemons
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Drew Pearce
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Hang Yu
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Sachetan M Tuladhar
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Rawad K Hallani
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Rajendar Sheelamanthula
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Garrett S LeCroy
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Lucas Siemons
- Structural biology of cells and viruses laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew J P White
- Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 2JD, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Jarvist M Frost
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Jenny Nelson
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Wolf CM, Guio L, Scheiwiller S, Pakhnyuk V, Luscombe C, Pozzo LD. Strategies for the Development of Conjugated Polymer Molecular Dynamics Force Fields Validated with Neutron and X-ray Scattering. ACS POLYMERS AU 2021; 1:134-152. [PMID: 36855657 PMCID: PMC9954299 DOI: 10.1021/acspolymersau.1c00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated polymers (CPs) enable a wide range of lightweight, lower cost, and flexible organic electronic devices, but a thorough understanding of relationships between molecular structure and dynamics and electronic performance is critical for improved device efficiencies and for new technologies. Molecular dynamics (MD) simulations offer in silico insight into this relationship, but their accuracy relies on the approach used to develop the model's parameters or force field (FF). In this Perspective, we first review current FFs for CPs and find that most of the models implement an arduous reparameterization of inter-ring torsion potentials and partial charges of classical FFs. However, there are few FFs outside of simple CP molecules, e.g., polythiophenes, that have been developed over the last two decades. There is also limited reparameterization of other parameters, such as nonbonded Lennard-Jones interactions, which we find to be directly influenced by conjugation in these materials. We further provide a discussion on experimental validation of MD FFs, with emphasis on neutron and X-ray scattering. We define multiple ways in which various scattering methods can be directly compared to results of MD simulations, providing a powerful experimental validation metric of local structure and dynamics at relevant length and time scales to charge transport mechanisms in CPs. Finally, we offer a perspective on the use of neutron scattering with machine learning to enable high-throughput parametrization of accurate and experimentally validated CP FFs enabled not only by the ongoing advancements in computational chemistry, data science, and high-performance computing but also using oligomers as proxies for longer polymer chains during FF development.
Collapse
Affiliation(s)
- Caitlyn M. Wolf
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,Center
for Neutron Research, Stop 6102, National
Institute of Standards and Technology, Gaithersburg, Maryland 20889-6102, United States,
| | - Lorenzo Guio
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States
| | - Sage Scheiwiller
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States
| | - Viktoria Pakhnyuk
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Christine Luscombe
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States,Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Lilo D. Pozzo
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,
| |
Collapse
|
7
|
Reisjalali M, Burgos-Mármol JJ, Manurung R, Troisi A. Local structuring of diketopyrrolopyrrole (DPP)-based oligomers from molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:19693-19707. [PMID: 34525153 DOI: 10.1039/d1cp03257g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microscopic structure of high mobility semiconducting polymers is known to be essential for their performance but it cannot be easily deduced from the available experimental data. A series of short oligomers of diketopyrrolopyrrole (DPP)-based materials that display high charge mobility are studied by molecular dynamics simulations to understand their local structuring at an atomic level. Different analyses are proposed to compare the ability of different oligomers to form large aggregates and their driving force. The simulations show that the tendency for this class of materials to form aggregates is driven by the interaction between DPP fragments, but this is modulated by the other conjugated fragments of the materials which affect the rigidity of the polymer and, ultimately, the size of the aggregates that are formed. The main structural features and the electronic structure of the oligomers are fairly similar above the glass transition temperature and at room temperature.
Collapse
Affiliation(s)
- Maryam Reisjalali
- Department of Chemistry, University of Liverpool, Crown Place, Liverpool, L69 7ZD, UK.
| | | | - Rex Manurung
- Department of Chemistry, University of Liverpool, Crown Place, Liverpool, L69 7ZD, UK.
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Crown Place, Liverpool, L69 7ZD, UK.
| |
Collapse
|