1
|
Mitra A, Roy R, Paul S. Modulating the Self-Assembly of a Camptothecin Prodrug with Paclitaxel for Anticancer Combination Therapy: A Molecular Dynamics Approach. J Phys Chem B 2024. [PMID: 39230512 DOI: 10.1021/acs.jpcb.4c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Camptothecin (CPT) and paclitaxel (PTX), derived from natural products, are recognized for their significant efficacy in clinical cancer treatments. Despite its therapeutic advantages, CPT is challenged by issues of toxicity and solubility, necessitating its use in conjugation with other compounds for enhanced compatibility. This study delves into the coassembly mechanism of Evans blue-conjugated camptothecin (EB-CPT) with PTX, aiming to elucidate their synergistic potential in combination therapy applications, employing all-atom molecular dynamics simulations. The EB-CPT prodrug is reported to form a self-aggregated cluster. Our findings suggest that increasing the PTX concentration induces a dispersion of EB-CPT clusters, thereby disrupting their inherent self-assembly. This disruption is explained to be facilitated by the coassembly of EB-CPT and PTX. With increasing concentration of PTX, a lengthening of the coassembled structures is observed, supporting the experimental findings of tube-like coassembled structures at higher weight ratios of PTX. Hydrophobic interactions and π-π stacking are the primary forces responsible for the formation of both self- and coassembled structures. Interestingly, the structural analysis reveals that the CPT moiety of EB-CPT is less involved in assemblies due to steric hindrances. Instead, the interaction and coassembly processes are predominantly mediated by the EB derivative component of the prodrug. This research underscores the critical role of the solubilizing agent, EB derivative, in mediating the flexibility and interaction of CPT in combination therapy strategies, particularly with PTX, thus emphasizing the importance of conjugates for therapeutic developments. Furthermore, the molecular insights into the interaction sites and mechanisms facilitating coassembly between EB-CPT and PTX contribute valuable knowledge to the field, highlighting the potential of these nanomedicine combinations in advancing cancer treatment modalities.
Collapse
Affiliation(s)
- Anandita Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Wang G, Zhu L, Wu X, Qian Z. Influence of Protonation on the Norepinephrine Inhibiting α-Synuclein 71-82 Oligomerization. J Phys Chem B 2023; 127:7848-7857. [PMID: 37683121 DOI: 10.1021/acs.jpcb.3c03270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) is closely linked to the massive presence of Lewy vesicles and Lewy axons in the cytoplasm of neurons, mainly consisting of α-synuclein (αS). Norepinephrine (NE), whose secretion can be increased by exercise, has been demonstrated to prevent the fibrillation of αS and to break down the mature αS fibrils. In this work, we focus on the influence of protonation on the inhibitory ability of NE by using amyloid core fragment αS71-82 as a template. All-atom replica-exchange molecular dynamics simulations (accumulating to 33.6 μs) in explicit water were performed to explore the inhibitory effect of protonated and nonprotonated NE on αS oligomerization. Our results show that NE/NE+ can lead to a significant decrease in β-sheet content with increasing temperature, while isolated αS maintains relatively higher β-sheet conformations until 363 K, implying that both NE and NE+ can lower the critical temperature required for αS fibril decomposition. NE and NE+ also lead to the formation of less compact αS oligomers by preventing the backbone hydrogen bonds and the side-chain packing. The protonation would affect the binding affinity, interaction modes, and binding intensity of NE with αS. Interesting, NE and NE+ have a distinct binding free energy in the electrostatic and solvation terms, which mostly counter each other and produce a weak binding intensity with αS. Our work contributes to a better understanding of the inhibitory mechanism of NE and NE+ on αS oligomerization relevant to PD pathogenesis, which may provide clues for the design of antiamyloid medicine.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shang Xing School, 6 Shangli Road, Shenzhen 518100, Guangdong, China
| | - Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| |
Collapse
|
3
|
Roy R, Paul S. Exploring the Curvature-Dependence of Boron Nitride Nanoparticles on the Inhibition of hIAPP Aggregation. J Phys Chem B 2023; 127:7558-7570. [PMID: 37616499 DOI: 10.1021/acs.jpcb.3c02689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanoparticles, particularly carbon nanoparticles, have gathered significant interest in the field of anti-aggregation research. However, due to their cytotoxicity, the exploration of biocompatible nanoparticles has become a new frontier in the quest for drugs against human amyloid diseases. The application of non-cytotoxic and biocompatible boron nitride (BN) nanoparticles against amyloid aggregation has been probed to tackle this issue. BN nanoparticles displayed inhibitory activity against the aggregation of Aβ and α-syn peptides. In this work, the effect of BN nanoparticles on the dimerization of hIAPP, which is associated with the pathogenesis of type 2 diabetes, is studied. BN nanoparticles prevent the misfolding of hIAPP into β-sheet-rich aggregates. On varying the curvature, the nanoparticles display variation in the interaction preference with hIAPP. Interestingly, as the hydrophobicity of the nanoparticles increases from (5,5) BN nanotube to BN nanosheet, the interaction propensity shifts from N-terminal to the amyloid prone C-terminal of hIAPP. The hydrophobic and aromatic stacking interactions are a contributing factor toward the binding between hIAPP and BN. Due to this, the flat surface of the nanosheet shows better interaction potential toward hIAPP, compared to the nanotubes. Further, the nanoparticles can also disassemble preformed hIAPP fibrils, and the effect is more pronounced for (5,5) nanotube and the nanosheet. This study provides insight into the inhibitory mechanism of hIAPP aggregation by boron nitride nanoparticles and also an understanding of the significance of the curvature of nanoparticles in their interaction with amyloid peptides, which is valuable for the design of antiamyloid drugs.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India
| |
Collapse
|
4
|
Moral R, Paul S. Influence of salt and temperature on the self-assembly of cyclic peptides in water: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:5406-5422. [PMID: 36723368 DOI: 10.1039/d2cp05160e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is found in the literature that cyclic peptides (CPs) are able to self-assemble in water to form cyclic peptide nanotubes (CPNTs) and are used extensively in the field of nanotechnology. Several factors influence the formation and stability of these nanotubes in water. However, an extensive study of the contribution of several important factors is still lacking. The purpose of this study is to explore the effect of temperature and salt (NaCl) on the association tendency of CPs. Furthermore, the self-association behavior of CPs in aqueous solutions at various temperatures is also thoroughly discussed. Cyclo-[(Asp-D-Leu-Lys-D-Leu)2] is considered for this study and a series of classical molecular dynamics (MD) simulations at three different temperatures, viz. 280 K, 300 K, and 320 K, both in pure water and in NaCl solutions of different concentrations are carried out. The calculations of radial distribution functions, preferential interaction parameters, cluster formation and hydrogen bonding properties suggest a strong influence of NaCl concentration on the association propensity of CPs. Low NaCl concentration hinders CP association while high NaCl concentration facilitates the association of CPs. Besides this, the association of CPs is found to be enhanced at low temperature. Furthermore, the thermodynamics of CP association is predominantly found to be enthalpy driven in both the presence and absence of salt. No crossover between enthalpy and entropy in CP association is observed. In addition, the MM-GBSA method is used to investigate the binding free energies of the CP rings that self-assembled to form nanotube like structures at all three temperatures.
Collapse
Affiliation(s)
- Rimjhim Moral
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|
5
|
Roy R, Paul S. Illustrating the Effect of Small Molecules Derived from Natural Resources on Amyloid Peptides. J Phys Chem B 2023; 127:600-615. [PMID: 36638829 DOI: 10.1021/acs.jpcb.2c07607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The onset of amyloidogenic diseases is associated with the misfolding and aggregation of proteins. Despite extensive research, no effective therapeutics are yet available to treat these chronic degenerative diseases. Targeting the aggregation of disease-specific proteins is regarded as a promising new approach to treat these diseases. In the past few years, rapid progress in this field has been made in vitro, in vivo, and in silico to generate potential drug candidates, ranging from small molecules to polymers to nanoparticles. Small molecular probes, mostly those derived from natural sources, have been of particular interest among amyloid inhibitors. Here, we summarize some of the most important natural small molecular probes which can inhibit the aggregation of Aβ, hIAPP, and α-syn peptides and discuss how their binding efficacy and preference for the peptides vary with their structure and conformation. This provides a comprehensive idea of the crucial factors which should be incorporated into the future design of novel drug candidates useful for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
6
|
Roy R, Paul S. Disparate Effect of Hybrid Peptidomimetics Containing Isomers of Aminobenzoic Acid on hIAPP Aggregation. J Phys Chem B 2022; 126:10427-10444. [PMID: 36459988 DOI: 10.1021/acs.jpcb.2c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The abnormal misfolding of human islet amyloid polypeptide (hIAPP) in pancreatic β-cells is implicated in the progression of type II diabetes (T2D). With the prevalence of T2D increasing worldwide, preventing the aggregation of hIAPP has been recognized as a promising therapeutic strategy to control this disease. Recently, a class of novel conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps) was found to demonstrate efficient inhibitory ability toward amyloid formation of hIAPP. One (Ile26) or more (Gly24 and Ile26) residues in these six-membered peptide sequences, which have been extracted from the amyloidogenic core of hIAPP, N22FGAIL27, are substituted by three different isomers of the conformationally restricted aromatic amino acid, i.e., aminobenzoic acid (β, γ, and δ), to generate these BSBHps. The presence of the nonproteinogenic aminobenzoic acid moiety renders the BSBHps to be more stable toward proteolytic degradation. The different isomeric BSBHps exhibit contrasting influence on the self-assembly of hIAPP. The BSBHps containing β- and γ-aminobenzoic acid can sufficiently prevent hIAPP aggregation, but those with the δ-aminobenzoic group stabilize the β-sheet-rich aggregate of hIAPP. The difference in the angle between the amino and carboxyl groups in the isomers of the aminobenzoic moiety causes the BSBHps to attain discrete conformation and hence leads to variation in their binding preference with hIAPP and ultimately their inhibitory potency. This guides the pathway for the dissimilar effect of BSBHps on peptide aggregation and, therefore, provides insights into the design considerations for novel drugs against T2D.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| |
Collapse
|
7
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Tang H, Sun Y, Ding F. Hydrophobic/Hydrophilic Ratio of Amphiphilic Helix Mimetics Determines the Effects on Islet Amyloid Polypeptide Aggregation. J Chem Inf Model 2022; 62:1760-1770. [PMID: 35311274 PMCID: PMC9123946 DOI: 10.1021/acs.jcim.1c01566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid depositions of human islet amyloid polypeptides (hIAPP) are associated with type II diabetes (T2D) impacting millions of people globally. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Helix mimetics, which modulate the protein-protein interaction by mimicking the side chain residues of a natural α-helix, were found to be a promising strategy for inhibiting hIAPP aggregation. Here, we applied molecular dynamics simulations to investigate two helix mimetics reported to have opposite effects on hIAPP aggregation in solution, the oligopyridylamide-based scaffold 1e promoted, whereas naphthalimide-appended oligopyridylamide scaffold DM 1 inhibited the aggregation of hIAPP in solution. We found that 1e promoted hIAPP aggregation because of the recruiting effects through binding with the N-termini of hIAPP peptides. In contrast, DM 1 with a higher hydrophobic/hydrophilic ratio effectively inhibited hIAPP aggregation by strongly binding with the C-termini of hIAPP peptides, which competed for the interpeptide contacts between amyloidogenic regions in the C-termini and impaired the fibrillization of hIAPP. Structural analyses revealed that DM 1 formed the core of hIAPP-DM 1 complexes and stabilized the off-pathway oligomers, whereas 1e formed the corona outside the hIAPP-1e complexes and remained active in recruiting free hIAPP peptides. The distinct interaction mechanisms of DM 1 and 1e, together with other reported potent antagonists in the literature, emphasized the effective small molecule-based amyloid inhibitors by disrupting peptide interactions that should reach a balanced hydrophobic/hydrophilic ratio, providing a viable and generic strategy for the rational design of novel anti-amyloid nanomedicine.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Physics, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
10
|
Pal S, Paul S. Theoretical investigation of conformational deviation of the human parallel telomeric G-quadruplex DNA in the presence of different salt concentrations and temperatures under confinement. Phys Chem Chem Phys 2021; 23:14372-14382. [PMID: 34179908 DOI: 10.1039/d0cp06702d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Various experimental reports address the stability of G-quadruplex DNA inside a close confinement such as α-hemolysin, nanocavity water pool and different metal-organic-frameworks (MOFs). To understand the conformational change of G-quadruplex DNA at the atomistic level, we have carried out a total of 40 μs simulation run under both non-polar and polar confinement conditions. To investigate the dynamics, we have considered two different KCl salt concentrations, i.e., 0.47 M (minimal salt concentration) and higher than 2 M (higher salt concentration), at two distinct temperatures, 300 K and 350 K. Here, we have observed that the human telomeric G-quadruplex DNA deviates more from its crystal structure at minimal salt concentration under both non-polar and polar confinement conditions. Besides, the loop regions deviate and fluctuate more compared to the other regions, i.e., sugar-phosphate backbone and tetrad regions. The presence of K+ ions is found to be primarily responsible for this phenomenon. From the spatial density function (SDF) plots, a higher density of K+ ions is observed in the backbone region. Furthermore, from the residue-wise first solvation shell estimation, we have noticed that the K+ ions mainly accumulate in the tetrad region under both non-polar and polar confinement conditions due to which the tetrad regions are more rigid than the loop regions. Higher salt concentration results in increased rigidity of the G-quadruplex DNA. Our study provides valuable insight into the conformational deviation of the G-quadruplex DNA under nanoconfinement conditions.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| |
Collapse
|
11
|
Paul S, Paul S. Controlling the self-assembly of human calcitonin: a theoretical approach using molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:14496-14510. [PMID: 34184696 DOI: 10.1039/d1cp00825k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human calcitonin (hCT) is a 32-residue amino acid poly-peptide hormone which is secreted by the C-cells (also known as parafollicular cells) of thyroid glands. It acts to inhibit osteoclast cell hormones by reducing the cell function and regulating calcium and phosphate in blood. hCT has a high tendency to assemble into protofilaments with β-sheet conformations. Amyloid fibril formation of hCT reduces its bio-activity and limits its application as a therapeutic drug. Salmon calcitonin (sCT), which also carries the same disulfide bridge at the N and C-terminus, but differs at the 16 residue position from hCT, has less propensity to aggregate than hCT. Human calcitonin has much higher bio-activity than sCT if its aggregation propensity is reduced. Substituting the key residues which are responsible for the aggregation of hCT, is one of the ways to reduce its aggregation and fibril formation. hCT analogues with less aggregation tendency can be exploited as therapeutic drugs. In this work, we study the amyloidogenic behavior of hCT and its peptide based derivatives i.e., sCT, phCT, N17H hCT, Y12L hCT and DM hCT, through classical molecular dynamics (MD) simulations. Our study reveals that sCT is the least aggregation prone derivative, and the double mutation at position 12 and 17 can reduce the aggregation propensity of this peptide. Also, we have applied these mutant variants of hCT as peptide inhibitors in the self-aggregation of hCT. This study could help in understanding and preparing peptide-based inhibitors for hCT fibrillation and their applications as therapeutic drugs.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Sarkar S, Mondal J. Mechanistic Insights on ATP's Role as a Hydrotrope. J Phys Chem B 2021; 125:7717-7731. [PMID: 34240882 DOI: 10.1021/acs.jpcb.1c03964] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrotropes are the small amphiphilic molecules which help in solubilizing hydrophobic entities in an aqueous medium. Recent experimental investigation has provided convincing evidence that adenosine triphosphate (ATP), besides being the energy currency of cell, also can act as a hydrotrope to inhibit the formation of protein condensates. In this work, we have designed computer simulations of prototypical macromolecules in aqueous ATP solution to dissect the molecular mechanism underlying ATP's newly discovered role as a hydrotrope. The simulation demonstrates that ATP can unfold a single chain of hydrophobic macromolecule as well as can disrupt the aggregation process of a hydrophobic assembly. Moreover, the introduction of charges in the macromolecule is found to reinforce ATP's disaggregation effects in a synergistic fashion, a behavior reminiscent of recent experimental observation of pronounced hydrotropic action of ATP in intrinsically disordered proteins. Molecular analysis indicates that this newfound ability of ATP is ingrained in its propensity of preferential binding to the polymer surface, which gets fortified in the presence of charges. The investigation also renders evidence that the key to the ATP's superior hydrotropic role over chemical hydrotropes (sodium xylene sulfonate, NaXS) may lie in its inherent self-aggregation propensity. Overall, via employing a bottom-up approach, the current investigation provides fresh mechanistic insights into the dual solubilizing and denaturing abilities of ATP.
Collapse
Affiliation(s)
- Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
13
|
Roy R, Paul S. Potential of ATP toward Prevention of hIAPP Oligomerization and Destabilization of hIAPP Protofibrils: An In Silico Perspective. J Phys Chem B 2021; 125:3510-3526. [PMID: 33792323 DOI: 10.1021/acs.jpcb.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aggregation of an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP), leads to one of the most prevalent endocrine disorders, type II diabetes mellitus (T2DM). Hence inhibition of hIAPP aggregation provides a possible therapeutic approach for the treatment of T2DM. In this regard, a new aspect of adenosine triphosphate (ATP), which is widely known as the energy source for biological reactions, has recently been discovered, where it can inhibit the formation of protein aggregates and simultaneously dissolve preformed aggregates at a millimolar concentration scale. In this work, we investigate the effect of ATP on the aggregation of an amyloidogenic segment of hIAPP, hIAPP22-28, and also of the full length sequence. Using all-atom classical molecular dynamics simulations, we observe that the tendency of hIAPP to oligomerize into β-sheet conformers is inhibited by ATP, due to which the peptides remain distant, loosely packed random monomers. Moreover, it can also disassemble preformed hIAPP protofibrils. ATP preferentially interacts with the hydrophobic residues of hIAPP22-28 fragment and the terminal and turn residues of the full length peptide. The hydrogen bonding, hydrophobic, π-π, and N-H-π stacking interactions are the driving forces for the ATP induced inhibition of hIAPP aggregation. Interestingly, the hydrophobic adenosine of ATP is found to be more in contact with the peptide residues than the hydrophilic triphosphate moiety. The insight into the inhibitory mechanism of ATP on hIAPP aggregation can prove to be beneficial for the design of novel amyloid inhibitors in the future.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
14
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|