1
|
Sánchez-Leija R, Mysona JA, de Pablo JJ, Nealey PF. Phase Behavior and Conformational Asymmetry near the Comb-to-Bottlebrush Transition in Linear-Brush Block Copolymers. Macromolecules 2024; 57:2019-2029. [PMID: 38495384 PMCID: PMC10938885 DOI: 10.1021/acs.macromol.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
This study explores how conformational asymmetry influences the bulk phase behavior of linear-brush block copolymers. We synthesized 60 diblock copolymers composed of poly(trifluoroethyl methacrylate) as the linear block and poly[oligo(ethylene glycol) methyl ether methacrylate] as the brush block, varying the molecular weight, composition, and side-chain length to introduce different degrees of conformational asymmetry. Using small-angle X-ray scattering, we determined the morphology and phase diagrams for three different side-chain length systems, mainly observing lamellar and cylindrical phases. Increasing the side-chain length of the brush block from three to nine ethylene oxide units introduces sufficient asymmetry between the blocks to alter the phase behavior, shifting the lamellar-to-cylindrical transitions toward lower brush block compositions and transitioning the brush block from the dense comb-like regime to the bottlebrush regime. Coarse-grained simulations support our experimental observations and provide a mapping between the composition and conformational asymmetry. A comparison of our findings to strong stretching theory across multiple phase boundary predictions confirms the transition between the dense comb-like regime and the bottlebrush regime.
Collapse
Affiliation(s)
- Regina
J. Sánchez-Leija
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Joshua A. Mysona
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Rappoport S, Chrysostomou V, Kafetzi M, Pispas S, Talmon Y. Self-Aggregation in Aqueous Media of Amphiphilic Diblock and Random Block Copolymers Composed of Monomers with Long Side Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3380-3390. [PMID: 36802652 DOI: 10.1021/acs.langmuir.2c03294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amphiphilic diblock copolymers and hydrophobically modified random block copolymers can self-assemble into different structures in a selective solvent. The formed structures depend on the copolymer properties, such as the ratio between the hydrophilic and the hydrophobic segments and their nature. In this work, we characterize by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) the amphiphilic copolymers poly(2-dimethylamino ethyl methacrylate)-b-poly(lauryl methacrylate) (PDMAEMA-b-PLMA) and their quaternized derivatives QPDMAEMA-b-PLMA at different ratios between the hydrophilic and the hydrophobic segments. We present the various structures formed by these copolymers, including spherical and cylindrical micelles, as well as unilamellar and multilamellar vesicles. We also examined by these methods the random diblock copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), which are partially hydrophobically modified by iodohexane (Q6) or iodododecane (Q12). The polymers with a small POEGMA block did not form any specific nanostructure, while a polymer with a larger POEGMA block formed spherical and cylindrical micelles. This nanostructural characterization could lead to the efficient design and use of these polymers as carriers of hydrophobic or hydrophilic compounds for biomedical applications.
Collapse
Affiliation(s)
- Sapir Rappoport
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Martha Kafetzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Yeshayahu Talmon
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
The structure and dynamics of bottlebrushes: Simulation and experimental studies combined. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Chen D, Quah T, Delaney KT, Fredrickson GH. Investigation of the Self-Assembly Behavior of Statistical Bottlebrush Copolymers via Self-Consistent Field Theory Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Timothy Quah
- Department of Chemical Engineering, University of California, Santa Barbara, California93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Park J, Thapar V, Choe Y, Padilla Salas LA, Ramírez-Hernández A, de Pablo JJ, Hur SM. Coarse-Grained Simulation of Bottlebrush: From Single-Chain Properties to Self-Assembly. ACS Macro Lett 2022; 11:1167-1173. [DOI: 10.1021/acsmacrolett.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juhae Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vikram Thapar
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Yeojin Choe
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | | | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Pan T, Dutta S, Sing CE. Interaction potential for coarse-grained models of bottlebrush polymers. J Chem Phys 2022; 156:014903. [PMID: 34998351 DOI: 10.1063/5.0076507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bottlebrush polymers are a class of highly branched macromolecules that show promise for applications such as self-assembled photonic materials and tunable elastomers. However, computational studies of bottlebrush polymer solutions and melts remain challenging due to the high computational cost involved in explicitly accounting for the presence of side chains. Here, we consider a coarse-grained molecular model of bottlebrush polymers where the side chains are modeled implicitly, with the aim of expediting simulations by accessing longer length and time scales. The key ingredients of this model are the size of a coarse-grained segment and a suitably coarse-grained interaction potential between the non-bonded segments. Prior studies have not focused on developing explicit forms of such potentials, instead, relying on scaling arguments to model non-bonded interactions. Here, we show how to systematically calculate an interaction potential between the coarse-grained segments of bottlebrush from finer grained explicit side chain models using Monte Carlo and Brownian dynamics and then incorporate it into an implicit side chain model. We compare the predictions from our coarse-grained implicit side chain model with those obtained from models with explicit side chains in terms of the potential of mean force, the osmotic second virial coefficient, and the interpenetration function, highlighting the range of applicability and limitations of the coarse-grained representation. Although presented in the context of homopolymer bottlebrushes in athermal solvents, our proposed method can be extended to other solvent conditions as well as to different monomer chemistries. We expect that our implicit side chain model will prove useful for accelerating large-scale simulations of bottlebrush solutions and assembly.
Collapse
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Fei HF, Yavitt BM, Nuguri S, Yu YG, Watkins JJ. Ultrafast Self-Assembly of Bottlebrush Statistical Copolymers: Well-Ordered Nanostructures from One-Pot Polymerizations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-Feng Fei
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Benjamin M. Yavitt
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sravya Nuguri
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Yong-Guen Yu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Hu M, Li X, Rzayev J, Russell TP. Hydrolysis-Induced Self-Assembly of High-χ–Low-N Bottlebrush Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingqiu Hu
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Xindi Li
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Thomas P. Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Le AN, Liang R, Ji X, Fu X, Zhong M. Random copolymerization of macromonomers as a versatile strategy to synthesize mixed‐graft block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Ruiqi Liang
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaoyu Ji
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
- Department of Chemistry Yale University New Haven Connecticut USA
| |
Collapse
|
10
|
Li X, Wang B, Liu QJ, Zhao R, Song DP, Li Y. Supersoft Elastic Bottlebrush Microspheres with Stimuli-Responsive Color-Changing Properties in Brine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6744-6753. [PMID: 34036783 DOI: 10.1021/acs.langmuir.1c00751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solvent-free supersoft elastomer is highly desirable for building photonic structures with significant stimuli-responsive color changes. We report supersoft elastic porous microspheres with vivid structural colors obtained via self-assembly of amphiphilic bottlebrush block copolymers at the water/oil interface templated by ordered water-in-oil-in-water double emulsions. The porous structure is composed of cross-linked bottlebrush polydimethylsiloxane (PDMS) as the supersoft elastic skeleton and bottlebrush poly(ethylene oxide) (PEO) as the internal responsive layer. The obtained microspheres show large reversible volume changes through well-controlled dehydration or hydration of PEO in response to salt ions in an aqueous environment. As a result, full-spectrum colors are obtained dependent on different salt concentrations. In-situ observation of color reflection of a microsphere indicates a gradual structural transition from the outside to the inside corresponding to migration of water molecules and salt ions. Moreover, rod-like bottlebrush PEO exhibits an anion-induced salting-out behavior different from that of random coil polymers. The significantly responsive behaviors of bottlebrush block copolymer (BBCP) assemblies in the presence of salt ions primarily rely on the supersoft elastic skeleton of the porous structure, providing a facile route to the creation of stimuli-responsive photonic materials by low-cost self-assembly methods.
Collapse
Affiliation(s)
- Xiaotong Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bangbang Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qiu-Jun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ruijun Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|