1
|
Mao R, Minevich B, McKeen D, Chen Q, Lu F, Gang O, Mittal J. Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions. Proc Natl Acad Sci U S A 2023; 120:e2302037120. [PMID: 38109548 PMCID: PMC10756293 DOI: 10.1073/pnas.2302037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA-shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.
Collapse
Affiliation(s)
- Runfang Mao
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN55455
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Daniel McKeen
- Department of Chemical Engineering, Columbia University, New York, NY10027
| | - Qizan Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY10027
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Chemistry, Texas A&M University, College Station, TX77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX77843
| |
Collapse
|
2
|
Dwivedi M, Singh SL, Bharadwaj AS, Kishore V, Singh AV. Self-Assembly of DNA-Grafted Colloids: A Review of Challenges. MICROMACHINES 2022; 13:mi13071102. [PMID: 35888919 PMCID: PMC9324607 DOI: 10.3390/mi13071102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
DNA-mediated self-assembly of colloids has emerged as a powerful tool to assemble the materials of prescribed structure and properties. The uniqueness of the approach lies in the sequence-specific, thermo-reversible hybridization of the DNA-strands based on Watson–Crick base pairing. Grafting particles with DNA strands, thus, results into building blocks that are fully programmable, and can, in principle, be assembled into any desired structure. There are, however, impediments that hinder the DNA-grafted particles from realizing their full potential, as building blocks, for programmable self-assembly. In this short review, we focus on these challenges and highlight the research around tackling these challenges.
Collapse
Affiliation(s)
- Manish Dwivedi
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India; (M.D.); (V.K.)
| | - Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
- Correspondence: (S.L.S.); (A.V.S.)
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India;
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India; (M.D.); (V.K.)
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
- Correspondence: (S.L.S.); (A.V.S.)
| |
Collapse
|
3
|
Appeldorn JH, Lemcke S, Speck T, Nikoubashman A. Employing Artificial Neural Networks to Identify Reaction Coordinates and Pathways for Self-Assembly. J Phys Chem B 2022; 126:5007-5016. [DOI: 10.1021/acs.jpcb.2c02232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jörn H. Appeldorn
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Simon Lemcke
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
4
|
Xia J, Lee M, Santos PJ, Horst N, Macfarlane RJ, Guo H, Travesset A. Nanocomposite tectons as unifying systems for nanoparticle assembly. SOFT MATTER 2022; 18:2176-2192. [PMID: 35212698 DOI: 10.1039/d1sm01738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocomposite tectons (NCTs) are nanocomposite building blocks consisting of nanoparticle cores functionalized with a polymer brush, where each polymer chain terminates in a supramolecular recognition group capable of driving particle assembly. Like other ligand-driven nanoparticle assembly schemes (for example those using DNA-hybridization or solvent evaporation), NCTs are able to make colloidal crystal structures with precise particle organization in three dimensions. However, despite the similarity of NCT assembly to other methods of engineering ordered particle arrays, the crystallographic symmetries of assembled NCTs are significantly different. In this study, we provide a detailed characterization of the dynamics of hybridizations through universal (independent of microscopic details) parameters. We perform rigorous free energy calculations and identify the persistence length of the ligand as the critical parameter accounting for the differences in the phase diagrams of NCTs and other assembly methods driven by hydrogen bond hybridizations. We also report new experiments to provide direct verification for the predictions. We conclude by discussing the role of non-equilibrium effects and illustrating how NCTs provide a unification of the two most successful strategies for nanoparticle assembly: solvent evaporation and DNA programmable assembly.
Collapse
Affiliation(s)
- Jianshe Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Margaret Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Peter J Santos
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Nathan Horst
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alex Travesset
- Department of Physics and Astronomy and Department of Materials Science and Engineering, Iowa State University and Ames Lab, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Mao R, Pretti E, Mittal J. Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices. ACS NANO 2021; 15:8466-8473. [PMID: 33939410 DOI: 10.1021/acsnano.0c10874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of diffusionless transformations during the assembly of DNA-functionalized particles (DFPs) is highly significant in designing reconfigurable materials whose structure and functional properties are tunable with controllable variables. In this paper, we first use a variety of computational models and techniques (including free energy methods) to address the nature of such transformations between face-centered cubic (FCC) and body-centered cubic (BCC) structures in a three-dimensional binary system of multiflavored DFPs. We find that the structural rearrangements between BCC and FCC structures are thermodynamically reversible and dependent on crystallite size. Smaller nuclei favor nonclose-packed BCC structures, whereas close-packed FCC structures are observed during the growth stage once the crystallite size exceeds a threshold value. Importantly, we show that a similar reversible transformation between BCC/FCC structures can be driven by changing temperature without introducing additional solution components, highlighting the feasibility of creating reconfigurable crystalline materials. Lastly, we validate this thermally responsive switching behavior in a DFP system with explicit DNA (un)hybridization, demonstrating our findings' applicability to experimentally realizable systems.
Collapse
Affiliation(s)
- Runfang Mao
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015-4791, United States
| | - Evan Pretti
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015-4791, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015-4791, United States
| |
Collapse
|