1
|
Xue J, Ji M, Lu Y, Pan D, Yang X, Yang X, Xu Z. The impact of chemical properties of the solid-liquid-adsorbate interfaces on the entropy-enthalpy compensation involved in adsorption. Phys Chem Chem Phys 2024; 26:8704-8715. [PMID: 38415756 DOI: 10.1039/d3cp05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite extensive studies on the thermodynamic mechanism governing molecular adsorption at the solid-water interface, a comprehensive understanding of the crucial role of interface properties in mediating the entropy-enthalpy compensation during adsorption is lacking, particularly at a quantitative level. Herein, we employed two types of surface models (hydroxyapatite and graphene) along with a series of amino acids to successfully elucidate how distinct interfacial features dictate the delicate balance between entropy and enthalpy variations. The adsorption of all amino acids on the hydroxyapatite surface is an enthalpy-dominated process, where the water-induced enthalpic component of the free energy and the surface-adsorbate electrostatic interaction term alternatively act as the driving force for adsorption in different regions of the surface. Although favorable interactions are observed between amino acids and the graphene surface, the entropy-enthalpy compensation exhibits dependence on the molecular size of the adsorbates. For small amino acids, favorable enthalpy changes predominantly determine their adsorption behavior; however, larger amino acids tend to bind more tightly with the graphene surface, which is thermodynamically dominated by the entropy variations despite the structural characteristics of amino acids. This study reveals specific entropy-enthalpy mechanisms underlying amino acid adsorption at the solid-liquid interface, providing guidance for surface design and synthesis of new biomolecules.
Collapse
Affiliation(s)
- Jinling Xue
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuanyuan Lu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dan Pan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
- Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang 215699, China
| |
Collapse
|
2
|
Panda AK, Basu B. Regenerative bioelectronics: A strategic roadmap for precision medicine. Biomaterials 2023; 301:122271. [PMID: 37619262 DOI: 10.1016/j.biomaterials.2023.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
In the past few decades, stem cell-based regenerative engineering has demonstrated its significant potential to repair damaged tissues and to restore their functionalities. Despite such advancement in regenerative engineering, the clinical translation remains a major challenge. In the stance of personalized treatment, the recent progress in bioelectronic medicine likewise evolved as another important research domain of larger significance for human healthcare. Over the last several years, our research group has adopted biomaterials-based regenerative engineering strategies using innovative bioelectronic stimulation protocols based on either electric or magnetic stimuli to direct cellular differentiation on engineered biomaterials with a range of elastic stiffness or functional properties (electroactivity/magnetoactivity). In this article, the role of bioelectronics in stem cell-based regenerative engineering has been critically analyzed to stimulate futuristic research in the treatment of degenerative diseases as well as to address some fundamental questions in stem cell biology. Built on the concepts from two independent biomedical research domains (regenerative engineering and bioelectronic medicine), we propose a converging research theme, 'Regenerative Bioelectronics'. Further, a series of recommendations have been put forward to address the current challenges in bridging the gap in stem cell therapy and bioelectronic medicine. Enacting the strategic blueprint of bioelectronic-based regenerative engineering can potentially deliver the unmet clinical needs for treating incurable degenerative diseases.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Wang X, Yao C, Yao X, Lin J, Li R, Huang K, Lin W, Long X, Dai C, Dong J, Yu X, Huang W, Weng W, Wang Q, Ouyang H, Cheng K. Dynamic photoelectrical regulation of ECM protein and cellular behaviors. Bioact Mater 2023; 22:168-179. [PMID: 36203959 PMCID: PMC9529514 DOI: 10.1016/j.bioactmat.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications. A light-activated molecular switch for regulation of cell attachment/detachment behaviors was established on (Gr/Si) substrates. Light-induced charge transfer from ECM protein to Gr/Si through π-π interactions, resulting in the conformational alteration of ECM proteins. Structural changes in ECM weakened the binding between RGD and integrin, inducing cell detachment. This work provides a feasible method for cell harvesting and improves the understanding of cell-ECM-material communications.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Cai Yao
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xudong Yao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Rui Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Kun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Weiming Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Xiaojun Long
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Chao Dai
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Jiajun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Xuegong Yu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Wenwen Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wang
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
- Corresponding author. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
- Corresponding author.
| |
Collapse
|
4
|
Salimi A, Chatterjee S, Lee JY. Exposure to the electric field: A potential way to block the aggregation of histidine tautomeric isomers of β-amyloid. Int J Biol Macromol 2023; 232:123385. [PMID: 36693605 DOI: 10.1016/j.ijbiomac.2023.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Controlling protein misfolding and accumulation in neurodegeneration is a challenge in chemical neuroscience. The application of appropriate electric fields (EFs) can be a potential noninvasive therapy to treat neuro disorders. The effect of EFs of varying intensities and directions on the conformational dynamics of β-Amyloid40 (Aβ40) under histidine tautomerism has been investigated for the first time. Our findings suggest that peptides tend to align their dipole moments with the orientation of EF. Irrespective of the EF direction, the dipole moment magnitude is affected by the EF strength. With the conformational changes, the EF strength equal to 0.5 V/nm destroyed the β-sheet content of the δδδ isomer as a potentially toxic agent. The content of the alpha-helical structure which can be transformed into the β-sheet is reduced. The strength of the EF showed a significant influence on the reduction of the number of intra-protein hydrogen bonds especially when EF is equal to 0.5 V/nm which could facilitate destabilization of the structure of the peptides. Current findings provide quantitative insights into the tautomerization-mediated Aβ40 dynamic and conformational changes induced by the external EFs in aqueous solutions, which may provide beneficial information for use as a therapeutic technique.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Razzokov J, Fazliev S, Makhkamov M, Marimuthu P, Baev A, Kurganov E. Effect of Electric Field on α-Synuclein Fibrils: Revealed by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24076312. [PMID: 37047286 PMCID: PMC10094641 DOI: 10.3390/ijms24076312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- Correspondence: ; Tel.: +998-90-116-23-20
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Mukhriddin Makhkamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL–Pharmacy) and Structural Bioinformatics Laboratory (SBL–Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Artyom Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
- Department of Biophysics, Biological Faculty, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Erkin Kurganov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Xue Z, Wang X, Xu D. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization. Phys Chem Chem Phys 2022; 24:18931-18942. [PMID: 35916012 DOI: 10.1039/d2cp02573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone is a typical inorganic-organic composite material with a multilevel hierarchical organization. In the lowest level of bone tissue, inorganic minerals, which are mainly composed of hydroxyapatite, are mineralized within the type I collagen fibril scaffold. Understanding the crystal prenucleation mechanism and growth of the inorganic phase is particularly important in the design and development of materials with biomimetic nanostructures. In this study, we built an all-atom human type I collagen fibrillar model with a 67 nm overlap/gap D-periodicity. Arginine residues were shown to serve as the dominant cross-linker to stabilize the fibril scaffold. Subsequently, the prenucleation mechanism of collagen intrafibrillar mineralization was investigated using a molecular dynamics approach. Considering the physiological pH of the human body (i.e., ∼7.4), HPO42- was initially used to simulate the protonation state of the phosphate ions. Due to the spatially constrained effects resulting from the overlap/gap structure of the collagen fibrils, calcium phosphate clusters formed mainly inside the hole zone but with different spatial distributions along the long axis direction; this indicated that the nucleation of calcium phosphate may be highly site-selective. Furthermore, the model containing both HPO42- and PO43- in the solution phase formed significantly larger clusters without any change in the nucleation sites. This phenomenon suggests that the existence of PO43- is beneficial for the mineralization process, and so the conversion of HPO42- to PO43- was considered a critical step during mineralization. Finally, we summarize the nucleation mechanism for collagen intrafibrillar mineralization, which could contribute to the fabrication of mineralized collagen biomimetic materials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
7
|
Xue Z, Wang X, Xu D. Molecular dynamic simulation of prenucleation of apatite at a type I collagen template: ion association and mineralization control. Phys Chem Chem Phys 2022; 24:11370-11381. [PMID: 35502709 DOI: 10.1039/d2cp00168c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biomineralization is a vital physiological process in living organisms, hence elucidating its mechanism is crucial in the optimization of controllable biomaterial preparation with hydroxyapatite and collagen, which could provide information for the design of innovative biomaterials. However, the mechanisms by which minerals and collagen interact in various ionic environments are unclear. Here, we applied molecular dynamics and free energy simulations to clarify type I collagen-mediated HAP prenucleation and simulated the physiological environment using different phosphate and carbonate protonation states. Calcium phosphate mineral formation on the type I collagen surface drastically differed among various H2PO4-, HPO42-, PO43-, CO32-, and HCO3- compositions. Our simulations indicated that the presence of HPO42- in the solution phase is critical to regulate the apatite nucleation, whereas the presence of H2PO4- may be inhibitory. The inclusion of CO32- in the solution might promote calcium phosphate cluster formation. In contrast, apatite cluster size may be regulated by changing the anion concentration ratios, including PO43-/HPO42- and PO43-/CO32-. Our free energy simulations attributed these phenomena to relative differences in binding thermostability and ion association kinetics. Our simulations provide a theoretical approach toward the effective control of collagen mineralization and the preparation of novel biomaterials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China. .,Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
8
|
Basu B, Gowtham N, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater 2022; 143:1-25. [PMID: 35202854 DOI: 10.1016/j.actbio.2022.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept 'biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using 'digital twins'. While analysing the key elements of the concept of 'biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the 'Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. STATEMENT OF SIGNIFICANCE: This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in 'biomaterialomics' concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.
Collapse
|
9
|
Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys 2022; 24:2866-2878. [PMID: 35060980 DOI: 10.1039/d1cp04997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immobilization of acetylcholinesterase on different nanomaterials has been widely used in the field of amperometric organophosphorus pesticide (OP) biosensors. However, the molecular adsorption mechanism of acetylcholinesterase on a nanomaterial's surface is still unclear. In this work, multiscale simulations were utilized to study the adsorption behavior of acetylcholinesterase from Torpedo californica (TcAChE) on amino-functionalized carbon nanotube (CNT) (NH2-CNT), carboxyl-functionalized CNT (COOH-CNT) and pristine CNT surfaces. The simulation results show that the active center and enzyme substrate tunnel of TcAChE are both close to and oriented toward the surface when adsorbed on the positively charged NH2-CNT, which is beneficial to the direct electron transfer (DET) and accessibility of the substrate molecule. Meanwhile, the NH2-CNT can also reduce the tunnel cost of the enzyme substrate of TcAChE, thereby further accelerating the transfer rate of the substrate from the surface or solution to the active center. However, for the cases of TcAChE adsorbed on COOH-CNT and pristine CNT, the active center and substrate tunnel are far away from the surface and face toward the solution, which is disadvantageous for the DET and transportation of enzyme substrate. These results indicate that NH2-CNT is more suitable for the immobilization of TcAChE. This work provides a better molecular understanding of the adsorption mechanism of TcAChE on functionalized CNT, and also provides theoretical guidance for the ordered immobilization of TcAChE and the design, development and improvement of TcAChE-OPs biosensors based on functionalized carbon nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|