1
|
Fujii Y, Ioka H, Minamoto C, Kurisaki I, Tanaka S, Ohta K, Tominaga K. Vibrational frequency fluctuations of poly(N,N-diethylacrylamide) in the vicinity of coil-to-globule transition studied by two-dimensional infrared spectroscopy and molecular dynamics simulations. J Chem Phys 2024; 161:064903. [PMID: 39120037 DOI: 10.1063/5.0218180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Poly(N,N-diethylacrylamide) (PdEA), one of the thermoresponsive polymers, in aqueous solutions has attracted much attention because of its characteristic properties, such as coil-to-globule (CG) transition. We performed two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to understand the hydration dynamics in the vicinity of the CG transition at the molecular level via vibrational frequency fluctuations of the carbonyl stretching modes in the side chains of PdEA. Furthermore, N,N-diethylpropionamide, a repeating monomer unit of PdEA, is also investigated for comparison. From decays of the frequency-frequency time correlation functions (FFTCFs) of the carbonyl stretching modes, we consider that inhomogeneity of the hydration environments originates from various backbone configurations of PdEA. The degree of the inhomogeneity depends on temperature. Hydration water molecules near the carbonyl groups are influenced by the confinements of the polymers. The restricted reorientation of the embedded water, the local torsions of the backbone, and the rearrangement of the whole structure contribute to the slow spectral diffusion. By performing MD simulations, we calculated the FFTCFs and dynamical quantities, such as fluctuations of the dihedral angles of the backbone and the orientation of the hydration water molecules. The simulated FFTCFs match well with the experimental results, indicating that the retarded water reorientations via the excluded volume effect play an important role in the vibrational frequency fluctuations of the carbonyl stretching mode. It is also found the embedded water molecules are influenced by the local torsions of the backbone structure within the time scales of the spectral diffusion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Hikaru Ioka
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Chihiro Minamoto
- Department of Applied Chemistry and Biotechnology, Niihama National College of Technology, Yakumo-cho 7-1, Niihama, Ehime 792-8580, Japan
| | - Ikuo Kurisaki
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Kalkan B, Bozbay R, Ciftbudak S, Orakdogen N. Rationally designed chitosan-interpenetrated cryobeads functionalized with polyacrylamide chains: Comparative analysis by Hertzian model and rubber elasticity. Int J Biol Macromol 2023; 253:127483. [PMID: 37863149 DOI: 10.1016/j.ijbiomac.2023.127483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Optimization of the synthesis of polymer microspheres and millimeter-sized gel beads has gained importance due to efficiency and design advantages in applications. A systematic study is presented to allow for a molecular-based understanding of elasticity of crosslinked-chitosan (CS) beads. Unique results were obtained examining the effect of polymerization temperature and gel-preparation form on physico-mechanical properties of CS-incorporated poly (N-isopropylacrylamide‑sodium acrylate)/polyacrylamide, PNIPA/PAAm-CS, beads. ATR-FTIR, and thermogravimetric analysis results confirmed the successful preparation and enhanced thermal stability of CS-based gel beads in the form of semi-IPN. The structural changes of semi-IPN gels were studied based on powder X-ray diffraction analysis. After being incorporated with CS, the cryopolymerization was carried out under cryo-conditions, and PNIPA/PAAm structure became much more resistant to mechanical load. Addition of CS to semi-IPN structure caused a 2-fold increase in compressive elastic modulus, while the gel preparation under cryoconditions also improved the mechanical properties considerably by lowering the polymerization temperature. The scaling parameter calculations estimated by Hertz model for PNIPA/PAAm-CS semi-IPN cryobeads are related to displacement of compression force with an exponent of 1.63 ± 0.19. As cryobead diameter increased, swelling degree tendency increased, while a decrease in modulus was observed with increasing swelling. The presence of CS in semi-IPNs improved pH-response in an acidic environment, but stiffness of CS reduced the shrinkage ability of cryobeads upon increasing swelling temperature. Based on the interaction between semi-IPN structure and salt solutions, an improvement in elastic modulus was observed in various ammonium salts and sodium tripolyphosphate solution. On-off switching of cryobeads was a reversible process that was consistent with changes in ammonium salt concentration. Qualitative comparisons with experimental results showed that the prepared cryobeads can be designed as drug release carriers by ionic strength-switching modulation.
Collapse
Affiliation(s)
- Birgul Kalkan
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey; Present Address: Max Planck Institute of Colloids and Interfaces, Potsdam, Brandenburg, Germany
| | - Rabia Bozbay
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey
| | - Sena Ciftbudak
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey
| | - Nermin Orakdogen
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
3
|
Nachaki EO, Leonik FM, Kuroda DG. Effect of the N-Alkyl Side Chain on the Amide-Water Interactions. J Phys Chem B 2022; 126:8290-8299. [PMID: 36219826 DOI: 10.1021/acs.jpcb.2c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amide-water interactions influence the structure and functions of amide-based systems, such as proteins and homopolymers. In particular, the N-alkylation of the amide unit appears to play a critical role in defining the interactions of the amide group. Previous studies have linked the thermal behavior of amide-based polymers to the nature of their N-alkyl side chain. However, the connection between the chemical structure of the N-alkyl and the hydration of the amide remains elusive. In this study, the solvation structure and dynamics of amides, having differing N-alkyl groups, are investigated using a combination of linear and nonlinear infrared spectroscopies and computational methods. Interestingly, the dynamics of the amide local environment do not slow down as the N-alkyl side chain becomes bulkier, but rather speeds up. Computational calculations confirm the hydration dynamics and assign the effect to smaller amplitude and faster rotations of the bulkier group. It is also observed experimentally that the hydrogen-bond making and breaking between water and the amide carbonyl do not directly relate to the size of the N-alkyl side chain. The bulkier N-isopropyl substituent presents significantly slower chemical exchange dynamics than smaller chains (ethyl and methyl), but the two small groups do not present a major difference. The hydrogen-bond making and breaking disparities and similarities among groups are well modeled by the theory demonstrating that the N-alkyl group affects the amide hydration structure and dynamics via a steric effect. In summary, the results presented here show that the size of the N-substituted alkyl group significantly influences the hydration dynamics of amides and stress the importance of considering this effect on much larger systems, such as polymers.
Collapse
Affiliation(s)
- Ernest O Nachaki
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Fedra M Leonik
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
4
|
Lanzalaco S, Gil P, Mingot J, Àgueda A, Alemán C, Armelin E. Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors. ACS Biomater Sci Eng 2022; 8:3329-3340. [PMID: 35653133 PMCID: PMC9988207 DOI: 10.1021/acsbiomaterials.2c00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[N-isopropylacrylamide-co-N,N'-methylene bis(acrylamide)] (PNIPAAm-co-MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C). An infrared thermographic camera was used to observe the polymer-hydrogel folding-unfolding process and to identify the new value of the LCST, connected with the heat generation by plasmonic-resonance gold NPs. The development of SERS PP prosthesis will be relevant for the bioimaging and biomarker detection of the implant by using the plasmonic effect and Raman vibrational spectroscopy for minimally invasive interventions (such as laparoscopy), to prevent patient inflammatory processes. Furthermore, Raman sources have been proved to not damage the cells, like happens with near-infrared irradiation, representing another advantage of moving to SERS approaches. The findings reported here offer unprecedented application possibilities in the biomedical field by extrapolating the material functionalization to other nonabsorbable polymer made devices (e.g., surgical sutures, grapes, wound dressings, among others).
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Basement S-1, 08019, Barcelona, Spain
| | - Pau Gil
- Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain
| | - Júlia Mingot
- Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Basement S-1, 08019, Barcelona, Spain
| | - Alba Àgueda
- Departament d'Enginyeria Química, CERTEC, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Fifth floor, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Basement S-1, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Basement S-1, 08019, Barcelona, Spain
| |
Collapse
|
5
|
Chatterjee S, Nam Y, Salimi A, Lee JY. Monitoring early-stage β-amyloid dimer aggregation by histidine site-specific two-dimensional infrared spectroscopy in a simulation study. Phys Chem Chem Phys 2022; 24:18691-18702. [PMID: 35899740 DOI: 10.1039/d2cp02479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring early-stage β-amyloid (Aβ) dimerization is a formidable challenge for understanding neurological diseases. We compared β-sheet formation and histidine site-specific two-dimensional infrared (2D IR) spectroscopic signatures of Aβ dimers with different histidine states (δ; Nδ1-H, ε; Nε2-H, or π; both protonated). Molecular dynamics (MD) simulations revealed that β-sheet formation is favored for the δδδ:δδδ and πππ:πππ tautomeric isomers showing strong couplings and frequent contacts between the central hydrophobic core and C-terminus compared with the εεε:εεε isomer. Characteristic blue-shifts in the 2D IR central bands were observed upon monomer-dimer transformation. The εεε:εεε dimer exhibited larger frequency shifts than δδδ:δδδ and πππ:πππ implying that the red-shift may have a correlation with Nδ1-H(δ) protonation. Our results support the tautomerization/protonation hypothesis that attributes Aβ misfolding to histidine tautomers as a possible primary initiator for Aβ aggregation and facilitates the application of histidine site-specific 2D IR spectroscopy for studying early-stage Aβ self-assembly.
Collapse
Affiliation(s)
| | - Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. .,Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| |
Collapse
|
6
|
Mohamad SF, Aguié-Béghin V, Kurek B, Coqueret X. Radiation-induced graft polymerization of N-isopropyl acrylamide onto microcrystalline cellulose: Assessing the efficiency of the peroxidation method. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kingsbury R, Hegde M, Wang J, Kusoglu A, You W, Coronell O. Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52647-52658. [PMID: 34705410 PMCID: PMC9043033 DOI: 10.1021/acsami.1c15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.
Collapse
Affiliation(s)
- Ryan Kingsbury
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maruti Hegde
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingbo Wang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wei You
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Cunha C, Klein P, Rosenauer C, Scherf U, Seixas de Melo JS. Fluorescence Studies on a Thermoresponsive PNIPAM-Polyfluorene Graft Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Carla Cunha
- CQC, Department of Chemistry, University of Coimbra, Coimbra P3004-535, Portugal
| | - Patrick Klein
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universitat Wuppertal, Gauss-Str. 20, Wuppertal D-42119, Germany
| | - Christine Rosenauer
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universitat Wuppertal, Gauss-Str. 20, Wuppertal D-42119, Germany
| | | |
Collapse
|
9
|
Quoika PK, Fernández-Quintero ML, Podewitz M, Hofer F, Liedl KR. Implementation of the Freely Jointed Chain Model to Assess Kinetics and Thermodynamics of Thermosensitive Coil-Globule Transition by Markov States. J Phys Chem B 2021; 125:4898-4909. [PMID: 33942614 PMCID: PMC8154620 DOI: 10.1021/acs.jpcb.1c01946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We revived and implemented
a method developed by Kuhn in 1934,
originally only published in German, that is, the so-called “freely
jointed chain” model. This approach turned out to be surprisingly
useful for analyzing state-of-the-art computer simulations of the
thermosensitive coil–globule transition of N-Isopropylacrylamide 20-mer. Our atomistic computer simulations are
orders of magnitude longer than those of previous studies and lead
to a reliable description of thermodynamics and kinetics at many different
temperatures. The freely jointed chain model provides a coordinate
system, which allows us to construct a Markov state model of the conformational
transitions. Furthermore, this guarantees a reliable reconstruction
of the kinetics in back-and-forth directions. In addition, we obtain
a description of the high diversity and variability of both conformational
states. Thus, we gain a detailed understanding of the coil–globule
transition. Surprisingly, conformational entropy turns out to play
only a minor role in the thermodynamic balance of the process. Moreover,
we show that the radius of gyration is an unexpectedly unsuitable
coordinate to comprehend the transition kinetics because it does not
capture the high conformational diversity within the different states.
Consequently, the approach presented here allows for an exhaustive
description and resolution of the conformational ensembles of arbitrary
linear polymer chains.
Collapse
Affiliation(s)
- Patrick K Quoika
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, A-6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, A-6020 Innsbruck, Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, A-6020 Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|