1
|
Dash R, Jabbari E. A Structure Independent Molecular Fragment Interfuse Model for Mesoscale Dissipative Particle Dynamics Simulation of Peptides. ACS OMEGA 2024; 9:18001-18022. [PMID: 38680324 PMCID: PMC11044228 DOI: 10.1021/acsomega.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
There is a need to develop robust computational models for mesoscale simulation of the structure of peptides over large length scales toward the discovery of novel peptides for medical applications to address the issues of peptide aggregation, enzymatic degradation, and short half-life. The primary objective was to predict the structure and conformation of peptides whose native structures are not known. This work presents a new model for computation of interaction parameters between the beads in coarse-grained dissipative particle dynamics (DPD) simulation that is properly calibrated for amino acids, supports compressibility requirement of water molecules, and accounts for subtle differences in the structure of amino acids and the charge in the side chain of charged amino acids. This new model is referred to as Structure Independent Molecular Fragment Interfuse Model, abbreviated as SIMFIM, because it accounts for specific interactions between different beads, which represent molecular fragments of the amino acids, in calculating nonbonded interaction parameters in the absence of knowing the actual peptide structure. The electrostatic interactions are incorporated in this model by using a normal distribution of charges around the center of the beads to prevent the collapse of oppositely charged soft beads. The uniquely parameterized DPD force field in the SIMFIM model is optimized for a given peptide with respect to the degree of coarse-grained graining for simulating the peptide over long times and length scales. The SIMFIM model was tested in this work using four peptides, namely, TrpZip2, Rubrivinodin, Lihuanodin, and IC3-CB1/Gai peptides, whose structures were sourced from the Protein Data Bank. The SIMFIM model predicted radius of gyration (Rg) values for the peptides closer to the actual structures as compared to the conventional model, and there was less deviation between the predicted and actual structures of the peptides.
Collapse
Affiliation(s)
- Ricky
Anshuman Dash
- Biomimetic Materials and
Tissue Engineering Laboratory, Chemical Engineering Department, University of South Carolina, 301 Main Street, Columbia, South Carolina 29208, United States
| | - Esmaiel Jabbari
- Biomimetic Materials and
Tissue Engineering Laboratory, Chemical Engineering Department, University of South Carolina, 301 Main Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
3
|
Palkar V, Thakar D, Kuksenok O. Nanogel Degradation at Soft Interfaces and in Bulk: Tracking Shape Changes and Interfacial Spreading. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Devanshu Thakar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382055, India
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
5
|
Palkar V, Kuksenok O. Controlling Degradation and Erosion of Polymer Networks: Insights from Mesoscale Modeling. J Phys Chem B 2021; 126:336-346. [PMID: 34964629 DOI: 10.1021/acs.jpcb.1c09570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding and controlling degradation of polymer networks on the mesoscale is critical for a range of applications. We utilize dissipative particle dynamics to capture photocontrolled degradation and erosion processes in hydrogels formed by end-linking of four-arm polyethylene glycol precursors. We demonstrate that the polydispersity and the fraction of broken-off fragments scale with the relative extent of reaction. The reverse gel point measured is close to the value predicted by the bond percolation theory on a diamond lattice. We characterize the erosion process via tracking the mass loss that accounts for the fragments remaining in contact with the percolated network. We quantify the dependence of the mass loss on the extent of reaction and on the properties of the film prior to degradation. These results elucidate the main features of degradation and erosion on the mesoscale and could provide guidelines for future design of degrading materials with dynamically controlled properties.
Collapse
Affiliation(s)
- Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
6
|
Santo KP, Neimark AV. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv Colloid Interface Sci 2021; 298:102545. [PMID: 34757286 DOI: 10.1016/j.cis.2021.102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Abstract
Dissipative particle dynamics (DPD) is one of the most efficient mesoscale coarse-grained methodologies for modeling soft matter systems. Here, we comprehensively review the progress in theoretical formulations, parametrization strategies, and applications of DPD over the last two decades. DPD bridges the gap between the microscopic atomistic and macroscopic continuum length and time scales. Numerous efforts have been performed to improve the computational efficiency and to develop advanced versions and modifications of the original DPD framework. The progress in the parametrization techniques that can reproduce the engineering properties of experimental systems attracted a lot of interest from the industrial community longing to use DPD to characterize, help design and optimize the practical products. While there are still areas for improvements, DPD has been efficiently applied to numerous colloidal and interfacial phenomena involving phase separations, self-assembly, and transport in polymeric, surfactant, nanoparticle, and biomolecules systems.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
7
|
Vaiwala R, Ayappa KG. A generic force field for simulating native protein structures using dissipative particle dynamics. SOFT MATTER 2021; 17:9772-9785. [PMID: 34651150 DOI: 10.1039/d1sm01194d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A coarse-grained force field for molecular dynamics simulations of the native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by mapping the bonds and angles for 20 amino acids onto target distributions obtained from fully atomistic simulations in explicit solvent. A dual-basin potential is introduced for stabilizing backbone angles, to cover a wide spectrum of protein secondary structures. The backbone dihedral potential enables folding of the protein from an unfolded initial state to the folded native structure. The proposed force field is validated by evaluating the structural properties of several model peptides and proteins including the SARS-CoV-2 fusion peptide, consisting of α-helices, β-sheets, loops and turns. Detailed comparisons with fully atomistic simulations are carried out to assess the ability of the proposed force field to stabilize the different secondary structures present in proteins. The compact conformations of the native states were evident from the radius of gyration and the high intensity peaks of the root mean square deviation histograms, which were found to be within 0.4 nm. The Ramachandran-like energy landscape on the phase space of backbone angles (θ) and dihedrals (ϕ) effectively captured the conformational phase space of α-helices at ∼(ϕ = 50°,θ = 90°) and β-strands at ∼(ϕ = ±180°,θ = 90-120°). Furthermore, the residue-residue native contacts were also well reproduced by the proposed DPD model. The applicability of the model to multidomain complexes was assessed using lysozyme and a large α-helical bacterial pore-forming toxin, cytolysin A. Our study illustrates that the proposed force field is generic, and can potentially be extended for efficient in silico investigations of membrane bound polypeptides and proteins using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Kawagoe Y, Kikugawa G, Shirasu K, Okabe T. Thermoset resin curing simulation using quantum-chemical reaction path calculation and dissipative particle dynamics. SOFT MATTER 2021; 17:6707-6717. [PMID: 34169305 DOI: 10.1039/d1sm00600b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermoset resin, which is commonly used as a matrix in carbon-fiber-reinforced plastic, requires curing procedures. We propose a curing simulation technique involving a dissipative particle dynamics (DPD) simulation, which can simulate a larger system and longer time period than those of conventional all-atom molecular dynamics (AA-MD) simulations. The proposed curing DPD simulation can represent the thermoset resin exothermic reaction process precisely by considering each reactivity according to the reaction types calculated via quantum-chemical reaction path calculations. The cure reaction process given by the curing DPD simulation agrees well with that given by a conventional curing AA-MD simulation, but with run-time and computational-resource reductions of 1/480 and 1/10 times, respectively. We also conduct reverse mapping, through which the AA-MD system can be reconstructed from the DPD system, to evaluate the structural and thermomechanical properties. The X-ray diffraction pattern and thermomechanical properties of the reconstructed system agree well with those of the systems derived from the curing AA-MD simulation and experimental setup. Therefore, a cured-resin AA-MD system can be obtained from a curing DPD simulation at an extremely low computational cost, and the thermomechanical properties can be evaluated precisely using this system. The proposed curing simulation technique can be applied in high-throughput screening for better materials properties and in large system calculations.
Collapse
Affiliation(s)
- Yoshiaki Kawagoe
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Gota Kikugawa
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan.
| | - Keiichi Shirasu
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Tomonaga Okabe
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan. and Department of Materials Science and Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|