1
|
Alasadi E, Baiz CR. Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics. SOFT MATTER 2024; 20:8291-8302. [PMID: 39387354 DOI: 10.1039/d4sm00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F-, Cl-, Br-) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.
Collapse
Affiliation(s)
- Eman Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Pal T, Sahu K. Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer. Phys Chem Chem Phys 2023; 25:29816-29830. [PMID: 37886857 DOI: 10.1039/d3cp03388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.
Collapse
Affiliation(s)
- Tapas Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Garrett P, Baiz CR. Hidden Beneath the Layers: Extending the Core/Shell Model of Reverse Micelles. J Phys Chem B 2023; 127:9399-9404. [PMID: 37870992 DOI: 10.1021/acs.jpcb.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Reverse micelles (RMs) provide a unique and highly tunable model system to study water in confined environments. The complex properties of water within RMs arise from the disruption of extended hydrogen bond (H-bond) networks that mediate local and long-range dynamics in bulk aqueous systems. Modulating the water pool size influences its H-bond dynamics, with smaller RMs increasingly restricting the H-bond network rearrangements leading to slower dynamics; however, within small confined systems, the dynamics of the surfactants also influence the water dynamics. Using ultrafast two-dimensional infrared spectroscopy, we investigate the effects of RM size on the surfactant headgroup rotamer populations and picosecond interfacial H-bond dynamics of aerosol-OT surfactants. We find that the increased water penetration accelerates H-bond dynamics, with larger RMs showing faster dynamics. These results imply that the changes in the RM structure alter the physical structure of the RM interface and thus alter the solvation dynamics. The findings in this study can be used for developing models for structure-specific solvation dynamics that account for the surfactant packing and hydration at the interface.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Garrett P, Shirley JC, Baiz CR. Forced Interactions: Ionic Polymers at Charged Surfactant Interfaces. J Phys Chem B 2023; 127:2829-2836. [PMID: 36926899 DOI: 10.1021/acs.jpcb.2c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Characterizing electrostatic interactions at heterogeneous interfaces is critical for developing a fundamental description of the dynamic processes at charged interfaces. Water-in-oil reverse micelles (RMs) offer a high degree of tunability across composition, polarity, and temperature, making them ideal systems for studying interactions at heterogeneous liquid-liquid interfaces. In the present study, we use a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to determine the picosecond interfacial dynamics in RMs containing binary compositions of sorbitan monostearate and anionic or cationic cosurfactants, which are used to tune the ratio of charged to nonionic surfactants at the interface. The positively charged polyethylenimine (PEI) polymer is encapsulated within the RMs, and the carbonyl stretching mode of sorbitan monostearate reports on the interfacial hydrogen-bond populations and dynamics. The results show that hydrogen-bond populations are altered through the inclusion of both negatively and positively charged cosurfactants. Charged surfactants increase interfacial water penetration into the surfactant layer, and the surface localization of polymers decreases water penetration. Local hydrogen-bond dynamics undergo a slowdown with the inclusion of charged surfactants, and the encapsulation of polymers results in similar effects, irrespective of the charge.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph C Shirley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Leister N, Götz V, Jan Bachmann S, Nachtigall S, Hosseinpour S, Peukert W, Karbstein H. A comprehensive methodology to study double emulsion stability. J Colloid Interface Sci 2023; 630:534-548. [DOI: 10.1016/j.jcis.2022.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
6
|
Drecun O, Striolo A, Bernardini C, Sarwar M. Hydration Structures on γ-Alumina Surfaces With and Without Electrolytes Probed by Atomistic Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9105-9122. [PMID: 36321420 PMCID: PMC9661474 DOI: 10.1021/acs.jpcb.2c06491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of systems, both engineered and natural, feature aqueous electrolyte solutions at interfaces. In this study, the structure and dynamics of water at the two prevalent crystallographic terminations of gamma-alumina, [110] and [100], and the influence of salts─sodium chloride, ammonium acetate, barium acetate, and barium nitrate on such properties─were investigated using equilibrium molecular dynamics simulations. The resulting interfacial phenomena were quantified from simulation trajectories via atomic density profiles, angle probability distributions, residence times, 2-D density distributions within the hydration layers, and hydrogen bond density profiles. Analysis and interpretation of the results are supported by simulation snapshots. Taken together, our results show stronger interaction and closer association of water with the [110] surface, compared to [100], while ion-induced disruption of interfacial water structure was more prevalent at the [100] surface. For the latter, a stronger association of cations is observed, namely sodium and ammonium, and ion adsorption appears determined by their size. The differences in surface-water interactions between the two terminations are linked to their respective surface features and distributions of surface groups, with atomistic-scale roughness of the [110] surface promoting closer association of interfacial water. The results highlight the fundamental role of surface characteristics in determining surface-water interactions, and the resulting effects on ion-surface and ion-water interactions. Since the two terminations of gamma-alumina considered represent interfaces of significance to numerous industrial applications, the results provide insights relevant for catalyst preparation and adsorption-based water treatment, among other applications.
Collapse
Affiliation(s)
- Olivera Drecun
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom
| | - Alberto Striolo
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom,School
of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States,
| | - Cecilia Bernardini
- Johnson
Matthey Technology Centre, Sonning Common, Reading RG4 9NH, United Kingdom
| | - Misbah Sarwar
- Johnson
Matthey Technology Centre, Sonning Common, Reading RG4 9NH, United Kingdom
| |
Collapse
|
7
|
Zhao R, Shirley JC, Lee E, Grofe A, Li H, Baiz CR, Gao J. Origin of thiocyanate spectral shifts in water and organic solvents. J Chem Phys 2022; 156:104106. [PMID: 35291777 PMCID: PMC8923707 DOI: 10.1063/5.0082969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vibrational spectroscopy is a useful technique for probing chemical environments. The development of models that can reproduce the spectra of nitriles and azides is valuable because these probes are uniquely suited for investigating complex systems. Empirical vibrational spectroscopic maps are commonly employed to obtain the instantaneous vibrational frequencies during molecular dynamics simulations but often fail to adequately describe the behavior of these probes, especially in its transferability to a diverse range of environments. In this paper, we demonstrate several reasons for the difficulty in constructing a general-purpose vibrational map for methyl thiocyanate (MeSCN), a model for cyanylated biological probes. In particular, we found that electrostatics alone are not a sufficient metric to categorize the environments of different solvents, and the dominant features in intermolecular interactions in the energy landscape vary from solvent to solvent. Consequently, common vibrational mapping schemes do not cover all essential interaction terms adequately, especially in the treatment of van der Waals interactions. Quantum vibrational perturbation (QVP) theory, along with a combined quantum mechanical and molecular mechanical potential for solute-solvent interactions, is an alternative and efficient modeling technique, which is compared in this paper, to yield spectroscopic results in good agreement with experimental FTIR. QVP has been used to analyze the computational data, revealing the shortcomings of the vibrational maps for MeSCN in different solvents. The results indicate that insights from QVP analysis can be used to enhance the transferability of vibrational maps in future studies.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Joseph C Shirley
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Euihyun Lee
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Adam Grofe
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Hui Li
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
8
|
Baryiames CP, Garrett P, Baiz CR. Bursting the bubble: A molecular understanding of surfactant-water interfaces. J Chem Phys 2021; 154:170901. [PMID: 34241044 DOI: 10.1063/5.0047377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Surfactant science has historically emphasized bulk, thermodynamic measurements to understand the microemulsion properties of greatest industrial significance, such as interfacial tensions, phase behavior, and thermal stability. Recently, interest in the molecular properties of surfactants has grown among the physical chemistry community. This has led to the application of cutting-edge spectroscopic methods and advanced simulations to understand the specific interactions that give rise to the previously studied bulk characteristics. In this Perspective, we catalog key findings that describe the surfactant-oil and surfactant-water interfaces in molecular detail. We emphasize the role of ultrafast spectroscopic methods, including two-dimensional infrared spectroscopy and sum-frequency-generation spectroscopy, in conjunction with molecular dynamics simulations, and the role these techniques have played in advancing our understanding of interfacial properties in surfactant microemulsions.
Collapse
Affiliation(s)
- Christopher P Baryiames
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, Texas 78712-1224, USA
| | - Paul Garrett
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, Texas 78712-1224, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|