1
|
Guo XY, Xie BB, Fang Q, Fang WH, Cui G. Unidirectional Photoisomerization of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein rsKiiro: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2025; 16:1485-1493. [PMID: 39898455 DOI: 10.1021/acs.jpclett.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In this study, a quantum mechanics/molecular mechanics (QM/MM) framework combined with the CASPT2//CASSCF approach was used to investigate the excited-state decay and isomerization of the rsKiiro green fluorescent protein (GFP) from its neutral "OFF" trans state. Upon irradiation at 400 nm, the trans conformation is initially excited to the bright S1 state. A rapid decay of the excited state then occurs and ultimately leads the molecule to the ground state. Notably, the clockwise and counterclockwise rotations of the C8C9C11N12 [or C5C8C9C11] dihedral angle are asymmetric or unidirectional, with only one direction of rotation effectively driving the excited-state relaxation. This process is shaped by hydrogen-bonding networks and steric constraints within the protein. In addition, trans-cis isomerization may not occur directly in the S1 state because the energy of the S1 cis minimum is relatively higher than that of the S1 trans minimum. Instead, the S1 cis minimum may be generated through the reabsorption of light near 400 nm, as the vertical excitation energy of the S0 cis minimum is close to that of the S0 trans minimum. This work provides important insights into the early photodynamics of rsKiiro GFP and aids in the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Xin-Yi Guo
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231 ,P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
2
|
Pan GN, Liu XY, Cui G, Fang WH. QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift. Biochemistry 2024. [PMID: 39715536 DOI: 10.1021/acs.biochem.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer. Upon excitation to the bright S1 state in the Franck-Condon region, mKeima relaxes to a metastable minimum-energy state. From this short-lived species, two competing deactivation pathways are available: the excited-state proton transfer in the S1 state, and the S1 decay via the S1/S0 conical intersection as a result of the cis-trans photoisomerization. In comparison, the former is a dominant excited-state relaxation pathway, leading to the cis anionic isomer of mKeima in the S1 state. This anionic intermediate then undergoes cis-trans photoisomerization after overcoming a barrier of approximately 10 kcal/mol in the S1 state, which is followed by an excited-state decay via the S1/S0 conical intersection region. The efficient nonadiabatic decay of the cis anionic isomer of mKeima in the S1 state inhibits the radiative process, leading to a weak emission around 520 nm observed experimentally. These findings shed important mechanistic light on the experimental observations and provide valuable insights that could help in the design of LSS-RFPs with superior fluorescence properties.
Collapse
Affiliation(s)
- Guang-Ning Pan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Renouard E, Nowinska M, Lacombat F, Plaza P, Müller P, Espagne A. Multiscale Transient Absorption Study of the Fluorescent Protein Dreiklang and Two Point Variants Provides Insight into Photoswitching and Nonproductive Reaction Pathways. J Phys Chem Lett 2023:6477-6485. [PMID: 37437305 DOI: 10.1021/acs.jpclett.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dreiklang is a reversibly photoswitchable fluorescent protein used as a probe in advanced fluorescence imaging. It undergoes a unique and still poorly understood photoswitching mechanism based on the reversible addition of a water molecule to the chromophore. We report the first comprehensive study of the dynamics of this reaction by transient absorption spectroscopy from 100 fs to seconds in the original Dreiklang protein and two point variants. The picture that emerges from our work is that of a competition between photoswitching and nonproductive reaction pathways. We found that photoswitching had a low quantum yield of 0.4%. It involves electron transfer from a tyrosine residue (Tyr203) to the chromophore and is completed in 33 ns. Nonproductive deactivation pathways comprise recombination of a charge transfer intermediate, excited-state proton transfer from the chromophore to a histidine residue (His145), and decay to the ground state via micro-/millisecond-lived intermediates.
Collapse
Affiliation(s)
- Emilie Renouard
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Magdalena Nowinska
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Fabien Lacombat
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pascal Plaza
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Agathe Espagne
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Zhu YH, Liu XX, Fang Q, Liu XY, Fang WH, Cui G. Multiple Photoisomerization Pathways of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2023; 14:2588-2598. [PMID: 36881005 DOI: 10.1021/acs.jpclett.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we have employed a combined CASPT2//CASSCF approach within the quantum mechanics/molecular mechanics (QM/MM) framework to explore the early time photoisomerization of rsEGFP2 starting from its two OFF trans states, i.e., Trans1 and Trans2. The results show similar vertical excitation energies to the S1 state in their Franck-Condon regions. Considering the clockwise and counterclockwise rotations of the C11-C9 bond, four pairs of the S1 excited-state minima and low-lying S1/S0 conical intersections were optimized, based on which we determined four S1 photoisomerization paths that are essentially barrierless to the relevant S1/S0 conical intersections leading to efficient excited-state deactivation to the S0 state. Most importantly, our work first identified multiple photoisomerization and excited-state decay paths, which must be seriously considered in the future. This work not only sheds significant light on the primary trans-cis photoisomerization of rsEGFP2 but also aids in the understanding of the microscopic mechanism of GFP-like RSFPs and the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Xin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Grigorenko B, Domratcheva T, Nemukhin A. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase. Molecules 2023; 28:molecules28052405. [PMID: 36903648 PMCID: PMC10005588 DOI: 10.3390/molecules28052405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Oxygenase activity of the flavin-dependent enzyme RutA is commonly associated with the formation of flavin-oxygen adducts in the enzyme active site. We report the results of quantum mechanics/molecular mechanics (QM/MM) modeling of possible reaction pathways initiated by various triplet state complexes of the molecular oxygen with the reduced flavin mononucleotide (FMN) formed in the protein cavities. According to the calculation results, these triplet-state flavin-oxygen complexes can be located at both re-side and si-side of the isoalloxazine ring of flavin. In both cases, the dioxygen moiety is activated by electron transfer from FMN, stimulating the attack of the arising reactive oxygen species at the C4a, N5, C6, and C8 positions in the isoalloxazine ring after the switch to the singlet state potential energy surface. The reaction pathways lead to the C(4a)-peroxide, N(5)-oxide, or C(6)-hydroperoxide covalent adducts or directly to the oxidized flavin, depending on the initial position of the oxygen molecule in the protein cavities.
Collapse
Affiliation(s)
- Bella Grigorenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Domratcheva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Nemukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
- Correspondence:
| |
Collapse
|
6
|
Modeling Light-Induced Chromophore Hydration in the Reversibly Photoswitchable Fluorescent Protein Dreiklang. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020505. [PMID: 36677562 PMCID: PMC9863226 DOI: 10.3390/molecules28020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We report the results of a computational study of the mechanism of the light-induced chemical reaction of chromophore hydration in the fluorescent protein Dreiklang, responsible for its switching from the fluorescent ON-state to the dark OFF-state. We explore the relief of the charge-transfer excited-state potential energy surface in the ON-state to locate minimum energy conical intersection points with the ground-state energy surface. Simulations of the further evolution of model systems allow us to characterize the ground-state reaction intermediate tentatively suggested in the femtosecond studies of the light-induced dynamics in Dreiklang and finally to arrive at the reaction product. The obtained results clarify the details of the photoswitching mechanism in Dreiklang, which is governed by the chemical modification of its chromophore.
Collapse
|
7
|
Lama B, Sarma M. Unraveling the Mechanistic Pathway for the Dual Fluorescence in Green Fluorescent Protein (GFP) Chromophore Analogue: A Detailed Theoretical Investigation. J Phys Chem B 2022; 126:9930-9944. [PMID: 36354358 DOI: 10.1021/acs.jpcb.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The photophysical properties of the para-sulfonamide (p-TsABDI) analogue of the green fluorescent protein (GFP) chromophore with both proton donating and accepting sites have been exploited in polar solvents to understand the origin of the unusual dual fluorescence nature of the chromophore. In the polar solvents, the compound undergoes structural rearrangement upon photoexcitation, leading to the ultrafast excited-state intermolecular proton transfer (ESIPT) phenomenon at the S1 surface. In this work, we employed both the static electronic structure calculations and on-the-fly molecular dynamics simulation to unravel the underlying reason for this peculiar behavior of the p-TsABDI analogue in polar solvents. To represent this adequately and provide extensive information on the ESIPT mechanism mediated by the solvent molecules, we considered explicit solvent molecules using the integral equation formalism variant of polarizable continuum (IEFPCM) model. From the static calculation analysis, we can conclude that the dual emissive behavior of the compound is ascribed to the proton transfer (PT) phenomena in the excited-state. However, based on the static calculation exclusively, it is hard to ascertain the mechanistic pathway of the PT phenomena. Hence, to investigate the dynamics and reaction mechanism for the ESIPT process, we performed the on-the-fly dynamics simulation for p-TsABDI in solvent clusters. Dynamics simulation results reveal that, based on the time lag between all the proton transfer processes, the ESIPT mechanism occurs in a stepwise manner from the benzylidene moiety of the chromophore to its imidazolinone moiety. However, the nonexistence of crossings between the S1- and S0-states confirms the PT characteristics of the reactions.
Collapse
Affiliation(s)
- Bittu Lama
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam781039, India
| |
Collapse
|
8
|
Zhuang B, Vos MH, Aleksandrov A. Photochemical and Molecular Dynamics Studies of Halide Binding in Flavoenzyme Glucose Oxidase. Chembiochem 2022; 23:e202200227. [PMID: 35876386 DOI: 10.1002/cbic.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Glucose oxidase (GOX), a characteristic flavoprotein oxidase with widespread industrial applications, binds fluoride (F - ) and chloride (Cl - ). We investigated binding properties of halide inhibitors of GOX through time-resolved spectral characterization of flavin-related photochemical processes and molecular dynamic simulations. Cl - and F - bind differently to the protein active site and have substantial but opposite effects on the population and decay of the flavin excited state. Cl - binds closer to the flavin, whose excited-state decays in <100 fs due to anion-π interactions. Such interactions appear absent in F - binding, which, however, significantly increases the active-site rigidity leading to more homogeneous, picosecond fluorescence decay kinetics. These findings are discussed in relation to the mechanism of halide inhibition of GOX by occupying the accommodation site of catalytic intermediates and increasing the active-site rigidity.
Collapse
Affiliation(s)
- Bo Zhuang
- Ecole Polytechnique, LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Marten H Vos
- CNRS UMR7645, Laboratory of Optics and Biosciences, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Alexey Aleksandrov
- Ecole Polytechnique, Laboratory of Optics and Biosciences, Department of Biology, rue du Saclay, 91128, Palaiseau, FRANCE
| |
Collapse
|
9
|
Giudetti G, Polyakov I, Grigorenko BL, Faraji S, Nemukhin AV, Krylov AI. How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. J Chem Theory Comput 2022; 18:5056-5067. [PMID: 35797455 DOI: 10.1021/acs.jctc.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work explores the level of transparency in reporting the details of computational protocols that is required for practical reproducibility of quantum mechanics/molecular mechanics (QM/MM) simulations. Using the reaction of an essential SARS-CoV-2 enzyme (the main protease) with a covalent inhibitor (carmofur) as a test case of chemical reactions in biomolecules, we carried out QM/MM calculations to determine the structures and energies of the reactants, the product, and the transition state/intermediate using analogous QM/MM models implemented in two software packages, NWChem and Q-Chem. Our main benchmarking goal was to reproduce the key energetics computed with the two packages. Our results indicate that quantitative agreement (within the numerical thresholds used in calculations) is difficult to achieve. We show that rather minor details of QM/MM simulations must be reported in order to ensure the reproducibility of the results and offer suggestions toward developing practical guidelines for reporting the results of biosimulations.
Collapse
Affiliation(s)
- Goran Giudetti
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Igor Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG The Netherlands
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
10
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
11
|
Ultrafast photooxidation of protein-bound anionic flavin radicals. Proc Natl Acad Sci U S A 2022; 119:2118924119. [PMID: 35181610 PMCID: PMC8872763 DOI: 10.1073/pnas.2118924119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Flavoproteins are colored proteins involved in a large variety of biochemical reactions. They can perform photochemical reactions, which are increasingly exploited for bioengineering new protein-derived photocatalysts. In particular, light-induced reduction of the resting oxidized state of the flavin by close-lying amino acids or substrates is extensively studied. Here, we demonstrate that the reverse and previously unknown reaction photooxidation of the anionic semireduced flavin radical, a short-lived reaction intermediate in many biochemical reactions, efficiently occurs in flavoprotein oxidases. We anticipate that this finding will allow photoreduction of external reactants and lead to exploration of novel photocatalytic pathways. The photophysical properties of anionic semireduced flavin radicals are largely unknown despite their importance in numerous biochemical reactions. Here, we studied the photoproducts of these intrinsically unstable species in five different flavoprotein oxidases where they can be stabilized, including the well-characterized glucose oxidase. Using ultrafast absorption and fluorescence spectroscopy, we unexpectedly found that photoexcitation systematically results in the oxidation of protein-bound anionic flavin radicals on a time scale of less than ∼100 fs. The thus generated photoproducts decay back in the remarkably narrow 10- to 20-ps time range. Based on molecular dynamics and quantum mechanics computations, positively charged active-site histidine and arginine residues are proposed to be the electron acceptor candidates. Altogether, we established that, in addition to the commonly known and extensively studied photoreduction of oxidized flavins in flavoproteins, the reverse process (i.e., the photooxidation of anionic flavin radicals) can also occur. We propose that this process may constitute an excited-state deactivation pathway for protein-bound anionic flavin radicals in general. This hitherto undocumented photochemical reaction in flavoproteins further extends the family of flavin photocycles.
Collapse
|
12
|
Mukherjee S, Jimenez R. Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of Physical Chemistry Strategies. J Phys Chem B 2022; 126:735-750. [DOI: 10.1021/acs.jpcb.1c05629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Grigorenko BL, Domratcheva T, Polyakov IV, Nemukhin AV. Protonation States of Molecular Groups in the Chromophore-Binding Site Modulate Properties of the Reversibly Switchable Fluorescent Protein rsEGFP2. J Phys Chem Lett 2021; 12:8263-8271. [PMID: 34424693 DOI: 10.1021/acs.jpclett.1c02415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of protonation states of the chromophore and its neighboring amino acid side chains of the reversibly switching fluorescent protein rsEGFP2 upon photoswitching is characterized by molecular modeling methods. Numerous conformations of the chromophore-binding site in computationally derived model systems are obtained using the quantum chemistry and QM/MM approaches. Excitation energies are computed using the extended multiconfigurational quasidegenerate perturbation theory (XMCQDPT2). The obtained structures and absorption spectra allow us to provide an interpretation of the observed structural and spectral properties of rsEGFP2 in the active ON and inactive OFF states. The results demonstrate that in addition to the dominating anionic and neutral forms of the chromophore, the cationic and zwitterionic forms may participate in the photoswitching of rsEGFP2. Conformations and protonation forms of the Glu223 and His149 side chains in the chromophore-binding site play an essential role in stabilizing specific protonation forms of the chromophore.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
14
|
Auhim HS, Grigorenko BL, Harris TK, Aksakal OE, Polyakov IV, Berry C, Gomes GDP, Alabugin IV, Rizkallah PJ, Nemukhin AV, Jones DD. Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chem Sci 2021; 12:7735-7745. [PMID: 34168826 PMCID: PMC8188506 DOI: 10.1039/d0sc06693a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Fluorescent proteins (FPs) have revolutionised the life sciences, but the mechanism of chromophore maturation is still not fully understood. Here we show that incorporation of a photo-responsive non-canonical amino acid within the chromophore stalls maturation of Venus, a yellow FP, at an intermediate stage; a crystal structure indicates the presence of O2 located above a dehydrated enolate form of the imidazolone ring, close to the strictly conserved Gly67 that occupies a twisted conformation. His148 adopts an "open" conformation so forming a channel that allows O2 access to the immature chromophore. Absorbance spectroscopy supported by QM/MM simulations suggests that the first oxidation step involves formation of a hydroperoxyl intermediate in conjunction with dehydrogenation of the methylene bridge. A fully conjugated mature chromophore is formed through release of H2O2, both in vitro and in vivo. The possibility of interrupting and photochemically restarting chromophore maturation and the mechanistic insights open up new approaches for engineering optically controlled fluorescent proteins.
Collapse
Affiliation(s)
- Husam Sabah Auhim
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
- Department of Biology, College of Science, University of Baghdad Baghdad Iraq
| | - Bella L Grigorenko
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Tessa K Harris
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Ozan E Aksakal
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Igor V Polyakov
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Colin Berry
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Gabriel Dos Passos Gomes
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 214 College St. Toronto Ontario M5T 3A1 Canada
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA +1 850 644 5795
| | | | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - D Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| |
Collapse
|