1
|
Müller M, Wöltje M, Hofmaier M, Tarpara B, Urban B, Aibibu D, Cherif C. In Situ ATR-FTIR Studies on the β-Sheet Formation of Native and Regenerated Bombyx mori Silk Material in Solution and Its Potential for Drug Releasing Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39073396 DOI: 10.1021/acs.langmuir.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Dynamic attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy at both solutions and coatings of a semicrystalline silk material derived from Bombyx mori was applied to monitor the β-sheet conformation, which is known to correlate with silk protein crystallinity. The secondary structure-sensitive Amide I band was analyzed. Two silk protein samples were studied: native-based silk buffer fibroin (NSF) was extracted from silk glands and regenerated silk fibroin (RSF) was extracted from degummed cocoons. Solutions of both NSF and RSF at 2 mg/mL featured low initial β-sheet contents of 5-12%, which further increased to 47-53% after 24 h. RSF and NSF solutions at 23 mg/mL also featured low initial β-sheet contents of 9-10%, which yet only slightly increased to 16-17% after 24 h. Coatings deposited from RSF solutions showed high surface integrity (Q > 99%) after rinsing in mineralized water, enabling interfacial drug delivery applications. RSF coatings were post-treated with either formic acid (FA) or pure methanol (MeOH) vapor to showcase inducibility of crystalline domains in RSF coatings. Such coatings were loaded with the model antibiotic drugs tetracycline (TCL) and streptomycin (STRP), and the sustained release of TCL was followed in contact with (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) buffer. RSF/TCL coatings post-treated with formic acid (FA) vapor followed by methanol (MeOH) vapor showed a significantly lower (52%) initial burst of rather hydrophobic TCL compared to untreated RSF/TCL coatings (72%), while no such significant release difference was observed for hydrophilic STRP. This was rationalized by a specific interaction between nonpolar TCL and hydrophobic crystalline RSF domains.
Collapse
Affiliation(s)
- M Müller
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Food Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - M Wöltje
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| | - M Hofmaier
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Food Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - B Tarpara
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Processing Technology, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - B Urban
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - D Aibibu
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| | - C Cherif
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| |
Collapse
|
2
|
Müller M, Wirth L, Urban B. Determination of the pK a Value of Protonated Mono and Polyamine in Solution Using Fourier Transform Infrared Titration. APPLIED SPECTROSCOPY 2024; 78:56-66. [PMID: 38116634 DOI: 10.1177/00037028231213673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The pKa values of propanolamine hydrochloride (PAMH) and poly(allylamine hydrochloride) (PAAMH) in concentrated solutions were determined by both Fourier transform infrared spectroscopy (FT-IR) titration and classical potentiometric (POT) titration and compared. Starting with the respective fully protonated forms PAMH and PAAMH and increasing the pH value by sodium hydroxide addition in situ attenuated total reflection FT-IR (ATR FT-IR) spectra on PAMH and PAAMH solutions show the variation of diagnostic infrared (IR) bands. From the decrease of the most intense δ(NH3+) band the dissociation process of the NH3+ groups could be followed. Thereby, from the respective normalized band area A the dissociation degree αIR of the ammonium groups could be determined. Plotting pH versus αIR and fitting this curve by a modified Henderson-Hasselbalch function pH = pKa + B log (αIR/1 - αIR) the parameters pKa and cooperativity factor B were obtained. pKa values from FT-IR titration were qualitatively in line with respective pKa values from POT titration. Quantitative systematic pKa deviations between polyelectrolyte (PEL) and respective monoelectrolyte and the tentative effects of PEL molecular weight, ambient ionic strength, and titration concept (FT-IR and POT) are discussed based on classical models of weak PEL.
Collapse
Affiliation(s)
- Martin Müller
- Department Functional Colloidal Materials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Luise Wirth
- Department Functional Colloidal Materials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Birgit Urban
- Department Functional Colloidal Materials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| |
Collapse
|
3
|
Hofmaier M, Heger JE, Lentz S, Schwarz S, Müller-Buschbaum P, Scheibel T, Fery A, Müller M. Influence of the Sequence Motive Repeating Number on Protein Folding in Spider Silk Protein Films. Biomacromolecules 2023; 24:5707-5721. [PMID: 37934893 DOI: 10.1021/acs.biomac.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Like multiblock copolymers, spider silk proteins are built of repetitive sequence motives. One prominent repetitive motif is based on the consensus sequence of spidroin 4 of the spider Araneus diadematus ADF4. The number x of the repeating sequence motives (C) determines the molecular weight of the recombinant ADF4-based, engineered spider silk protein denoted as eADF4(Cx). eADF4(Cx) can be used as a model for intrinsically disordered proteins (IDP) and to elucidate their folding. Herein, the influence of the variation of the sequence motive repeating number x (x = 1, 2, 4, 8, 16) on the protein folding within eADF4(Cx) films was investigated. eADF4(Cx) films were cast from 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solutions onto planar silicon model substrates, revealing mainly helical or random coil structure. Upon treatment with methanol vapor (ptm), the formation of crystalline β-sheets was triggered. Dichroic Fourier-transform infrared (FTIR) spectroscopy, circular dichroism, spectroscopic ellipsometry, atomic force microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), and electrokinetic and contact angle measurements were used to get information concerning the secondary structure and folding kinetics, orientation of β-sheets, the ratio of parallel/antiparallel β-sheets, domain sizes and distributions, surface topography, surface potential, hydrophobicity and the film integrity under water. Significant differences in the final β-sheet content, the share of antiparallel β-sheet structures, film integrity, surface potential, and isoelectric points between eADF4(Cx) with x = 1, 2 and eADF4(Cx) with x = 4, 8, 16 gave new insights in the molecular weight-dependent structure formation and film properties of IDP systems. GISAXS and kinetic measurements confirmed a relation between β-sheet crystal growth rate and final β-sheet crystal size. Further, competing effects of reduced diffusibility hindering accelerated crystal growth and enhanced backfolding promoting accelerated crystal growth with increasing molecular weight were discussed.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Julian E Heger
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
| | - Sarah Lentz
- Functional Polymer Interfaces Group, University of Bayreuth, Bayreuth 95447, Germany
| | - Simona Schwarz
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Garching 85748, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Bayreuth 95447, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Molecular Bioscience (BZMB), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Material Science and Engineering (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth 95440, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Dresden 01062, Germany
| |
Collapse
|
4
|
Hofmaier M, Flemming P, Guskova O, Münch AS, Uhlmann P, Müller M. Swelling and Orientation Behavior of End-Grafted Polymer Chains by In Situ Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Complementing In Situ Ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16219-16230. [PMID: 37941338 DOI: 10.1021/acs.langmuir.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The literature lacks established concrete parameters for assigning grafted chain regimes. In this context, dichroic in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and in situ ellipsometry were used complementarily, offering new opportunities for conformational analysis of end-grafted polymer chains. Especially polymer chain orientation was studied as a new parameter, among others, for proper chain regime assignment in this report. Alkyne-functionalized poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with a molecular weight of 49.8 kg/mol and a contour length of around 80 nm was grafted to self-assembled monolayers bearing triazole end groups as reported. Different chain regimes were generated by using three different grafting densities. ATR-FTIR spectroscopy based on the ν(C═O) stretching vibration at around 1728 cm-1 provided a new direct approach to determine the GD of polymer chains. Significant shifts in the position of the ν(C═O) band comparing dry and wet states were observed, caused by increased hydrogen bonding interactions between PDMAEMA and water. Finally, the averaged orientation of PDMAEMA chains along the z-axis was determined using dichroic ATR-FTIR spectroscopy based on the dichroic ratios of the ν(C═O) band and molecular order parameters SZ,MOL calculated thereof. High SZ,MOL values were found for the wet state compared to the dry state, confirming that all GD PDMAEMA samples are in the brush regime in the swollen state.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Patricia Flemming
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Olga Guskova
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Kaitzer Straße 4, D-01069 Dresden, Germany
| | - Alexander S Münch
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra Uhlmann
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Martin Müller
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| |
Collapse
|
5
|
Hofmaier M, Malanin M, Bittrich E, Lentz S, Urban B, Scheibel T, Fery A, Müller M. β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides. Biomacromolecules 2023; 24:825-840. [PMID: 36632028 DOI: 10.1021/acs.biomac.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in molecular biology and medicine because their induced folding can lead to so-called conformational diseases, where β-amyloids play an important role. Still, the molecular folding process into the different substructures, such as parallel/antiparallel or extended β-sheet/crossed β-sheet is not fully understood. The recombinant spider silk protein eADF4(Cx) consisting of repeating modules C, which are composed of a crystalline (pep-c) and an amorphous peptide sequence (pep-a), can be used as a model system for IDP since it can assemble into similar structures. In this work, blend films of the pep-c and pep-a sequences were investigated to modulate the β-sheet formation by varying the molar fraction of pep-c and pep-a. Dichroic Fourier-transform infrared spectroscopy (FTIR), circular dichroism, spectroscopic ellipsometry, atomic force microscopy, and IR nanospectroscopy were used to examine the secondary structure, the formation of parallel and antiparallel β-sheets, their orientation, and the microscopic roughness and phase formation within peptide blend films upon methanol post-treatment. New insights into the formation of filament-like structures in these silk blend films were obtained. Filament-like structures could be locally assigned to β-sheet-rich structures. Further, the antiparallel or parallel character and the orientation of the formed β-sheets could be clearly determined. Finally, the ideal ratio of pep-a and pep-c sequences found in the fibroin 4 of the major ampullate silk of spiders could also be rationalized by comparing the blend and spider silk protein systems.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Mikhail Malanin
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Eva Bittrich
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Sarah Lentz
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany
| | - Birgit Urban
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062Dresden, Germany
| |
Collapse
|