1
|
Zang Z, Chou S, Tian J, Xu A, Zhao Q, Wang L, He Y, Li B. Study on preparation of "ping-pong" ball shaped chitosan oligosaccharide - based hollow mesoporous carbon carrier for efficient anthocyanins loading. Food Chem 2025; 464:141752. [PMID: 39481308 DOI: 10.1016/j.foodchem.2024.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Carriers for efficient loading and delivery of compounds are urgently needed. A multifunctional nanoplatform of ordered hollow mesoporous carbon (HMC) was developed to load anthocyanins (AN) efficiently. The morphology, specific surface area, binding mode, and biocompatibility of HMC were verified. HMCs were uniformly spherical with well-defined cavities and mesoporous shells, similar to a "ping-pong" ball shape, and this shape of HMC provided a more spatial location for the load of the AN. And the best loading result of AN was 33.39% ± 3.00%. Coarse-grained molecular dynamics (CGMD) simulations showed that HMC and AN may bind by electrostatic interaction and hydrogen bonding, the binding process indicated that HMC contributed to the loading of AN, and the cytotoxicity results showed no significant toxicity of the complex. The homogeneous morphology and good biocompatibility of HMC offer new probabilities for the high effectiveness of oral delivery of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shurui Chou
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. No.20 Xinyangguang Road,Jiyang street, Zhuji City, Zhejiang Province 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. No.20 Xinyangguang Road,Jiyang street, Zhuji City, Zhejiang Province 311800, China
| | - Bin Li
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
2
|
Tang K, Cui X. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11829-11842. [PMID: 38809819 DOI: 10.1021/acs.langmuir.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pulmonary drug delivery has garnered significant attention due to its targeted local lung action, minimal toxic side effects, and high drug utilization. However, the physicochemical properties of inhaled nanoparticles (NPs) used as drug carriers can influence their interactions with the pulmonary surfactant (PS) monolayer, potentially altering the fate of the NPs and impairing the biophysical function of the PS monolayer. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affect their interactions with the PS monolayer. Initially, the definition and properties of NPs, as well as the composition and characteristics of the PS monolayer, are introduced. Subsequently, the coarse-grained molecular dynamics (CGMD) simulation method for studying the interactions between NPs and the PS monolayer is presented. Finally, the implications of the hydrophobicity, size, shape, surface charge, surface modification, and aggregation of NPs on their interactions with the PS monolayer and on the composition of biomolecular corona are discussed. In conclusion, gaining a deeper understanding of the effects of the physicochemical properties of NPs on their interactions with the PS monolayer will contribute to the development of safer and more effective nanomedicines for pulmonary drug delivery.
Collapse
Affiliation(s)
- Kailiang Tang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Donadoni E, Siani P, Frigerio G, Milani C, Cui Q, Di Valentin C. The effect of polymer coating on nanoparticles' interaction with lipid membranes studied by coarse-grained molecular dynamics simulations. NANOSCALE 2024. [PMID: 38646798 DOI: 10.1039/d4nr00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nanoparticles' (NPs) permeation through cell membranes, whether it happens via passive or active transport, is an essential initial step for their cellular internalization. The NPs' surface coating impacts the way they translocate through the lipid bilayer and the spontaneity of the process. Understanding the molecular details of NPs' interaction with cell membranes allows the design of nanosystems with optimal characteristics for crossing the lipid bilayer: computer simulations are a powerful tool for this purpose. In this work, we have performed coarse-grained molecular dynamics simulations and free energy calculations on spherical titanium dioxide NPs conjugated with polymer chains of different chemical compositions. We have demonstrated that the hydrophobic/hydrophilic character of the chains, more than the nature of their terminal group, plays a crucial role in determining the NPs' interaction with the lipid bilayer and the thermodynamic spontaneity of NPs' translocation from water to the membrane. We envision that this computational work will be helpful to the experimental community in terms of the rational design of NPs for efficient cell membrane permeation.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Carolina Milani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| |
Collapse
|
4
|
Islam MZ, Hossain SI, Deplazes E, Saha SC. Concentration-dependent cortisone adsorption and interaction with model lung surfactant monolayer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
5
|
Supakijsilp A, He J, Lin X, Ye J. Molecular dynamics simulation insights into the cellular uptake of elastic nanoparticles through human pulmonary surfactant. RSC Adv 2022; 12:24222-24231. [PMID: 36128539 PMCID: PMC9403708 DOI: 10.1039/d2ra03670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The interaction between inhaled nanoparticles (NPs) and the pulmonary surfactant (PS) monolayer has drawn significant attention due to its potential in drug delivery design and application for respiratory therapeutics in active and passive cellular uptake pathways. Even though much attention has been given to explore the interaction between NPs and the PS monolayer, the effects of the NP elasticity on the translocation across the PS monolayer have not been thoroughly studied. Here, we performed a series of coarse-grained (CG) molecular dynamics simulations to study active or passive cellular uptake pathways of three NPs with different elasticities through a PS monolayer. The differences between active and passive pathways underly the enhanced targeting ability by ligand-receptor interaction (L-R interaction). In the active or passive cellular uptake pathways, it is found that the increase in stiffness level leads to a higher penetrability of NPs at the same time range. The soft NP has always been withheld inside the PS monolayer due to the lowest level of elasticity, while the other two types of NPs penetrate through the PS monolayer as the simulation progresses toward the end. The NPs in the active cellular uptake pathways take a longer time to penetrate the PS monolayer, resulting in a longer average penetration distance of approximately 40.55% and a higher average number of contacts, approximately 36.11%, than passive cellular uptake pathways, due to the L-R interaction. Moreover, it demonstrates that NPs in active cellular uptake pathways have a significantly higher targeting ability with the PS monolayer. We conclude that the level of NP elasticities has a substantial link to the penetrability in active or passive cellular uptake pathways. These results provide valuable insights into drug delivery and nanoprobe design for inhaled NPs within the lungs.
Collapse
Affiliation(s)
- Akkaranunt Supakijsilp
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Jing He
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University Beijing 100191 P. R. China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
6
|
Jiao F, Hossain SI, Sang J, Saha SC, Gu Y, Hughes ZE, Gandhi NS. Molecular basis of transport of surface functionalised gold nanoparticles to pulmonary surfactant. RSC Adv 2022; 12:18012-18021. [PMID: 35800307 PMCID: PMC9205331 DOI: 10.1039/d2ra01892f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Ligands like alkanethiol (e.g. dodecanethiol, hexadecanethiol, etc.) and polymers (e.g. poly(vinyl pyrrolidone), polyethylene glycol-thiol) capped to the gold nanoparticles (AuNPs) are widely used in biomedical field as drug carriers and as promising materials for probing and manipulating cellular processes. Ligand functionalised AuNPs are known to interact with the pulmonary surfactant (PS) monolayer once reaching the alveolar region. Therefore, it is crucial to understand the interaction between AuNPs and PS monolayers. Using coarse-grained molecular dynamics simulations, the effect of ligand density, and ligand length have been studied for two classes of ligands on a PS model monolayer consisting of DPPC, POPG, cholesterol and SP-B (mini-peptide). The ligands considered in this study are alkanethiol and polyethylene glycol (PEG) thiol as examples of hydrophobic and hydrophilic ligands, respectively. It was observed that the interaction between AuNPs and PS changes the biophysical properties of PS monolayer in compressed and expanded states. The AuNPs with hydrophilic ligand, can penetrate through the monolayer more easily, while the AuNPs with hydrophobic ligand are embedded in the monolayer and participated in deforming the monolayer structure particularly the monolayer in the compressed state. The bare AuNPs hinder to lower the monolayer surface tension value at the interface, however introducing ligand to the bare AuNPs or increasing the ligand length and density have an impact of lowering of monolayer surface tension to a minor extent. The simulation results guide the design of ligand protected NPs as drug carriers and can identify the nanoparticles' potential side effects on lung surfactant. Molecular-level observations of the behavior of ligand functionalised gold nanoparticles with a lipid monolayers.![]()
Collapse
Affiliation(s)
- Fengxuan Jiao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Sheikh I. Hossain
- School of Life Science, University of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia
| | - YuanTong Gu
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Zak E. Hughes
- School of Chemistry and Biosciences, The University of Bradford, Bradford, BD7 1DP, UK
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Hossain SI, Luo Z, Deplazes E, Saha SC. Shape matters-the interaction of gold nanoparticles with model lung surfactant monolayers. J R Soc Interface 2021; 18:20210402. [PMID: 34637640 DOI: 10.1098/rsif.2021.0402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lung surfactant monolayer (LSM) forms the main biological barrier for any inhaled particles to enter our bloodstream, including gold nanoparticles (AuNPs) present as air pollutants and under investigation for use in biomedical applications. Understanding the interaction of AuNPs with lung surfactant can assist in understanding how AuNPs enter our lungs. In this study, we use coarse-grained molecular dynamics simulations to investigate the effect of four different shape D AuNPs (spherical, box, icosahedron and rod) on the structure and dynamics of a model LSM, with a particular focus on differences resulting from the shape of the AuNP. Monolayer-AuNP systems were simulated in two different states: the compressed state and the expanded state, representing inhalation and exhalation conditions, respectively. Our results indicate that the compressed state is more affected by the presence of the AuNPs than the expanded state. Our results show that in the compressed state, the AuNPs prevent the monolayer from reaching the close to zero surface tension required for normal exhalation. In the compressed state, all four nanoparticles (NPs) reduce the lipid order parameters and cause a thinning of the monolayer where the particles drag surfactant molecules into the water phase. Comparing the different properties shows no trend concerning which shape has the biggest effect on the monolayer, as shape-dependent effects vary among the different properties. Insights from this study might assist future work of how AuNP shapes affect the LSM during inhalation or exhalation conditions.
Collapse
Affiliation(s)
- Sheikh I Hossain
- School of Life Sciences, University of Technology, Sydney 81 Broadway, Ultimo NSW 2007, Australia
| | - Zhen Luo
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney 81 Broadway, Ultimo NSW 2007, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology, Sydney 81 Broadway, Ultimo NSW 2007, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney 81 Broadway, Ultimo NSW 2007, Australia
| |
Collapse
|