1
|
Buyukdagli S. Systematic Incorporation of Ionic Hard-Core Size into the Debye-Hückel Theory via the Cumulant Expansion of the Schwinger-Dyson Equations. J Chem Theory Comput 2024; 20:2729-2739. [PMID: 38518257 DOI: 10.1021/acs.jctc.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The Debye-Hückel (DH) formalism of bulk electrolytes equivalent to the Gaussian-level closure of the electrostatic Schwinger-Dyson identities without the interionic hard-core (HC) coupling is extended via the cumulant treatment of these equations augmented by HC interactions. By comparing the monovalent ion activity and pressure predictions of our cumulant-corrected DH (CCDH) theory with hypernetted-chain results and Monte Carlo simulations from the literature, we show that this rectification extends the accuracy of the DH formalism from submolar to molar salt concentrations. In the case of internal energies or the general case of divalent electrolytes mainly governed by charge correlations, the improved accuracy of the CCDH theory is limited to submolar ion concentrations. Comparison with experimental data from the literature shows that, via the adjustment of the hydrated ion radii, CCDH formalism can equally reproduce the nonuniform effect of salt increment on the ionic activity coefficients up to molar concentrations. The inequality satisfied by these HC sizes coincides with the cationic branch of the Hofmeister series.
Collapse
|
2
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Nonmonotonic electrophoretic mobility of rodlike polyelectrolytes by multivalent coions in added salt. Phys Rev E 2024; 109:014501. [PMID: 38366448 DOI: 10.1103/physreve.109.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
It is well established that when multivalent counterions or salts are added to a solution of highly charged polyelectrolytes (PEs), correlation effects can cause charge inversion of the PE, leading to electrophoretic mobility (EM) reversal. In this work, we use coarse-grained molecular-dynamics simulations to unravel the less understood effect of coion valency on EM reversal for rigid DNA-like PEs. We find that EM reversal induced by multivalent counterions is suppressed with increasing coion valency in the salt added and eventually vanishes. Further, we find that EM is enhanced at fixed low salt concentrations for salts with monovalent counterions when multivalent coions with increasing valency are introduced. However, increasing the salt concentration causes a crossover that leads to EM reversal which is enhanced by increasing coion valency at high salt concentration. Remarkably, this multivalent coion-induced EM reversal persists even for low values of PE linear charge densities where multivalent counterions alone cannot induce EM reversal. These results facilitate tuning PE-PE interactions and self-assembly with both coion and counterion valencies.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
3
|
Jiménez-Ángeles F, Ehlen A, Olvera de la Cruz M. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors. Faraday Discuss 2023; 246:576-591. [PMID: 37450272 DOI: 10.1039/d3fd00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Layered materials that perform mixed electron and ion transport are promising for energy harvesting, water desalination, and bioinspired functionalities. These functionalities depend on the interaction between ionic and electronic charges on the surface of materials. Here we investigate ion transport by an external electric field in an electrolyte solution confined in slit-like channels formed by two surfaces separated by distances that fit only a few water layers. We study different electrolyte solutions containing monovalent, divalent, and trivalent cations, and we consider walls made of non-polarizable surfaces and conductors. We show that considering the surface polarization of the confining surfaces can result in a significant increase in ionic conduction. The ionic conductivity is increased because the conductors' screening of electrostatic interactions enhances ionic correlations, leading to faster collective transport within the slit. While important, the change in water's dielectric constant in confinement is not enough to explain the enhancement of ion transport in polarizable slit-like channels.
Collapse
Affiliation(s)
- Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Ali Ehlen
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Interactions between Rigid Polyelectrolytes Mediated by Ordering and Orientation of Multivalent Nonspherical Ions in Salt Solutions. PHYSICAL REVIEW LETTERS 2023; 130:158202. [PMID: 37115871 DOI: 10.1103/physrevlett.130.158202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/23/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Multivalent ions in solutions with polyelectrolytes (PEs) induce electrostatic correlations that can drastically change ion distributions around the PEs and their mutual interactions. Using coarse-grained molecular dynamics simulations, we show how in addition to valency, ion shape and concentration can be harnessed as tools to control rigid like-charged PE-PE interactions. We demonstrate a correlation between the orientational ordering of aspherical ions and how they mediate the effective PE-PE attraction induced by multivalency. The interaction type, strength, and range can thus be externally controlled in ionic solutions. Our results can be used as generic guidelines to tune the self-assembly of like-charged polyelectrolytes by variation of the characteristics of the ions.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
5
|
Yang X, Buyukdagli S, Scacchi A, Sammalkorpi M, Ala-Nissila T. Theoretical and computational analysis of the electrophoretic polymer mobility inversion induced by charge correlations. Phys Rev E 2023; 107:034503. [PMID: 37073074 DOI: 10.1103/physreve.107.034503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 04/20/2023]
Abstract
Electrophoretic (EP) mobility reversal is commonly observed for strongly charged macromolecules in multivalent salt solutions. This curious effect takes place, e.g., when a charged polymer, such as DNA, adsorbs excess counterions so that the counterion-dressed surface charge reverses its sign, leading to the inversion of the polymer drift driven by an external electric field. In order to characterize this seemingly counterintuitive phenomenon that cannot be captured by electrostatic mean-field theories, we adapt here a previously developed strong-coupling-dressed Poisson-Boltzmann approach to the cylindrical geometry of the polyelectrolyte-salt system. Within the framework of this formalism, we derive an analytical polymer mobility formula dressed by charge correlations. In qualitative agreement with polymer transport experiments, this mobility formula predicts that the increment of the monovalent salt, the decrease of the multivalent counterion valency, and the increase of the dielectric permittivity of the background solvent suppress charge correlations and increase the multivalent bulk counterion concentration required for EP mobility reversal. These results are corroborated by coarse-grained molecular dynamics simulations showing how multivalent counterions induce mobility inversion at dilute concentrations and suppress the inversion effect at large concentrations. This re-entrant behavior, previously observed in the aggregation of like-charged polymer solutions, calls for verification by polymer transport experiments.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
| | | | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
6
|
Zhou S, Zhang LT. Analytical Solution of Modified Poisson–Boltzmann Equation and Application to Cylindrical Nanopore Supercapacitor Energy Storage. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Buyukdagli S. Dielectric Manipulation of Polymer Translocation Dynamics in Engineered Membrane Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:122-131. [PMID: 34958582 DOI: 10.1021/acs.langmuir.1c02174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The alteration of the dielectric membrane properties by membrane engineering techniques such as carbon nanotube (CNT) coating opens the way to novel molecular transport strategies for biosensing purposes. In this article, we predict a macromolecular transport mechanism enabling the dielectric manipulation of the polymer translocation dynamics in dielectric membrane pores confining mixed electrolytes. In the giant permittivity regime of these engineered membranes governed by attractive polarization forces, multivalent ions adsorbed by the membrane nanopore trigger a monovalent ion separation and set an electroosmotic counterion flow. The drag force exerted by this flow is sufficiently strong to suppress and invert the electrophoretic velocity of anionic polymers and also to generate the mobility of neutral polymers whose speed and direction can be solely adjusted by the charge and concentration of the added multivalent ions. These features identify the dielectrically generated transport mechanism as an efficient means to drive overall neutral or weakly charged analytes that cannot be controlled by an external voltage. We also reveal that, in anionic polymer translocation, multivalent cation addition into the monovalent salt solution amplifies the electric current signal by several factors. The signal amplification is caused by the electrostatic many-body interactions replacing the monovalent polymer counterions by the multivalent cations of higher electric mobility. The strength of this electrokinetic charge discrimination points out the potential of multivalent ions as current amplifiers capable of providing boosted resolution in nanopore-based biosensing techniques.
Collapse
|
8
|
Buyukdagli S. Explicit solvent theory of salt-induced dielectric decrement. Phys Chem Chem Phys 2022; 24:13976-13987. [DOI: 10.1039/d2cp00853j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Within the framework of an electrolyte model composed of structured solvent molecules and salt ions coupled by electrostatic and hard-core interactions, we characterize the physical mechanism behind salt-induced dielectric decrement.
Collapse
|