1
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
2
|
Lemay-St-Denis C, Pelletier JN. From a binding module to essential catalytic activity: how nature stumbled on a good thing. Chem Commun (Camb) 2023; 59:12560-12572. [PMID: 37791701 DOI: 10.1039/d3cc04209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enzymes are complex macromolecules capable of catalyzing a wide variety of chemical reactions with high efficiency. Nonetheless, biological catalysis can be rudimentary. Here, we describe an enzyme that is built from a simple protein fold. This short protein sequence - almost a peptide - belongs to the ancient SH3 family of binding modules. Surprisingly, this binding module catalyzes the specific reduction of dihydrofolate using NADPH as a reducing cofactor, making this a dihydrofolate reductase. Too small to provide all the required binding and catalytic machinery on its own, it homotetramerizes, thus creating a large, central active site environment. Remarkably, none of the active site residues is essential to the catalytic function. Instead, backbone interactions juxtapose the reducing cofactor proximal to the target imine of the folate substrate, and a specific motion of the substrate promotes formation of the transition state. In this feature article, we describe the features that make this small protein a functional enzyme capable of catalyzing a metabolically essential reaction, highlighting the characteristics that make it a model for the evolution of primitive enzymes from binding modules.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Nachliel E, Gutman M. Reaction within the coulomb-cage; science in retrospect. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184071. [PMID: 36244436 DOI: 10.1016/j.bbamem.2022.184071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The Coulomb-cage is defined as the space where the electrostatic interaction between two bodies is more intensive than the thermal energy (kBT). For small molecule, the Coulomb-cage is a small sphere, extending only few water molecules towards the bulk and its radius is sensitive to the ionic strength of the solution. For charged proteins or membranal structures, the Coulomb-cage can engulf large fraction of the surface and provides a preferred pathway for ion propagation along the surface. Similarly, electrostatic potential at the inner space of a channel can form preferential trajectories passage for ions. The dynamics of ions inside the Coulomb-cage of ions was formulated by the studies of proton-anion recombination of excited photoacids. In the present article, we recount the study of intra- Coulomb-cage reaction taking place on the surface of macro-molecular bodies like micelles, membranes, proteins and intra-protein cavities. The study progressed stepwise, tracing the dynamics of a proton ejected from a photo-acid molecule located at defined sites (on membrane, inter-membrane space, active site of enzyme, inside Large Pore Channels etc.). Accumulation of experimental observations encouraged us to study of the reaction mechanism by molecular dynamics simulations of ions within the Coulomb-cage of proteins surface or inside large pores. The intra-Coulomb-cage proton transfer events follows closely the fine structure of the electrostatic field inside the cage and reflects the shape of nearby dielectric boundaries, the temporal ordering of the solvent molecules and the structural fluctuations of the charged side chains. The article sums some 40 years of research, which in retrospect clarifies the intra-Coulomb-cage reaction mechanism.
Collapse
Affiliation(s)
- E Nachliel
- Laser Laboratory for Fast Reactions, Dep. Of Biochemistry and Molecular Biology, Life Sciences, Tel Aviv University, Israel
| | - M Gutman
- Laser Laboratory for Fast Reactions, Dep. Of Biochemistry and Molecular Biology, Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
4
|
Adhikari P, Song M, Bai M, Rijal P, DeGroot N, Lu Y. Solvent Effects on the Temperature Dependence of Hydride Kinetic Isotope Effects: Correlation to the Donor-Acceptor Distances. J Phys Chem A 2022; 126:7675-7686. [PMID: 36228057 DOI: 10.1021/acs.jpca.2c06065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein structural effects on the temperature (T) dependence of kinetic isotope effects (KIEs) in H-tunneling reactions have recently been used to discuss about the role of enzyme thermal motions in catalysis. Frequently observed nearly T-independent KIEs in the wild-type enzymes and T-dependent KIEs in variants suggest that H-tunneling in the former is assisted by the naturally evolved protein constructive vibrations that help sample short donor-acceptor distances (DADs) needed. This explanation that correlates the T-dependence of KIEs with DAD sampling has been highly debated as simulations following other H-tunneling models sometimes gave alternative explanations. In this paper, solvent effects on the T-dependence of KIEs of two hydride tunneling reactions of NADH/NAD+ analogues (represented by ΔEa = EaD - EaH) were determined in attempts to replicate the observations in enzymes and test the protein vibration-assisted DAD sampling concept. Effects of selected aprotic solvents on the DADPRC's of the productive reactant complexes (PRCs) and the DADTRS's of the activated tunneling ready states (TRSs) were obtained through computations and analyses of the kinetic data, including 2° KIEs, respectively. A weaker T-dependence of KIEs (i.e., smaller ΔEa) was found in a more polar aprotic solvent in which the system has a shorter average DADPRC and DADTRS. Further results show that a charge-transfer (CT) complexation made of a stronger donor/acceptor gives rise to a smaller ΔEa. Overall, the shorter and less broadly distributed DADs resulting from the stronger CT complexation vibrations give rise to a smaller ΔEa. Our results appear to support the explanation that links the T-dependence of KIEs to the donor-acceptor rigidity in enzymes.
Collapse
Affiliation(s)
- Pratichhya Adhikari
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| | - Meimei Song
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| | - Mingxuan Bai
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| | - Pratap Rijal
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| | - Nicholas DeGroot
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| | - Yun Lu
- Department of Chemistry, Southern Illinois University, Edwardsville, Edwardsville, Illinois 62026, United States
| |
Collapse
|
5
|
The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Comput Biol 2022; 18:e1010140. [PMID: 35613161 PMCID: PMC9173628 DOI: 10.1371/journal.pcbi.1010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.
Collapse
|
6
|
Zhao LN, Kaldis P. Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folate-mediated one-carbon pathway. FEBS J 2022; 290:2279-2291. [PMID: 35303396 DOI: 10.1111/febs.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Mammalian metabolism comprises a series of interlinking pathways that include two major cycles: the folate and methionine cycles. The folate-mediated metabolic cycle uses several oxidation states of tetrahydrofolate to carry activated one-carbon units to be readily used and interconverted within the cell. They are required for nucleotide synthesis, methylation and metabolism, and particularly for proliferation of cancer cells. Based on the latest progress in genome-wide CRISPR loss-of-function viability screening of 789 cell lines, we focus on the most cancer-dependent enzymes in this pathway, especially those that are hyperactivated in cancer, to provide new insight into the chemical basis for cancer drug development. Since the complete 3D structure of several of these enzymes of the one-carbon pathway in their active form are not available, we used homology modelling integrated with the interpretation of the reaction mechanism. In addition, have reconstructed the most likely scenario for the reactions taking place paired with their catalytic competence that provides a testable framework for this pathway.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Bai M, Koirala S, Lu Y. Direct Correlation between Donor-Acceptor Distance and Temperature Dependence of Kinetic Isotope Effects in Hydride-Tunneling Reactions of NADH/NAD + Analogues. J Org Chem 2021; 86:7500-7507. [PMID: 34037396 DOI: 10.1021/acs.joc.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent study of structural effects on primary kinetic isotope effects (1° KIEs) of H-transfer reactions in enzymes and solution revealed that a more rigid reaction system gave rise to a weaker temperature dependence of 1° KIEs, i.e., a smaller isotopic activation energy difference (ΔEa = EaD - EaH). This has been explained within the contemporary vibrationally assisted activated H-tunneling (VA-AHT) model in which rigidity is defined according to the density of donor-acceptor distance (DADTRS) populations at the tunneling ready state (TRS) sampled by heavy atom motions. To test the relationship between DADTRS and ΔEa in the model, we developed a computational method to obtain the TRS structures for H-transfer reactions. The method was applied to three hydride transfer reactions of NADH/NAD+ analogues for which the ΔEa's as well as secondary (2°) KIEs have been reported. The 2° KIEs computed from each TRS structure were fitted to the observed values to obtain the optimal TRSs/DADTRS's. It was found that a shorter DADTRS does correspond with a smaller ΔEa. This appears to support the VA-AHT model. Moreover, an analysis of hybridizations at the bent TRS structures shows that rehybridizations at the donor-acceptor centers are much more advanced than predicted from the classical mechanism. This implies that more orbital preparations are required for the nonclassical H-tunneling to take place.
Collapse
Affiliation(s)
- Mingxuan Bai
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Shailendra Koirala
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Yun Lu
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| |
Collapse
|
8
|
Gao LG, Fleming DG, Truhlar DG, Xu X. Large Anharmonic Effects on Tunneling and Kinetics: Reaction of Propane with Muonium. J Phys Chem Lett 2021; 12:4154-4159. [PMID: 33890795 DOI: 10.1021/acs.jpclett.1c01229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Calculations of kinetic isotope effects (KIEs) provide challenging tests of quantal mass effects on reaction rates, and muonium KIEs are the most challenging. Here, we show that it can be very important to include reaction-coordinate-dependent vibrational anharmonicity along the whole reaction path to calculate tunneling probabilities and KIEs. For the reaction of propane with Mu, this decreases both the height and width of the vibrationally adiabatic potential barrier, with both effects increasing the rate constants. Our results agree well with the experimental observations.
Collapse
Affiliation(s)
- Lu Gem Gao
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Donald G Fleming
- TRIUMF and Department of Chemistry, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|