1
|
Wang X, Lv L, Li T, Chen C, Fan X, Cui B, Tang L, Chen Y, Liu H, Li X. Distance-Dependent Symmetry-Breaking Charge Transfer in 9,10- Bis(phenylethynyl)anthracene Dimers. Chemistry 2025; 31:e202403125. [PMID: 39506831 DOI: 10.1002/chem.202403125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
To investigate the effect of the through-bond coupling strength on the symmetry-breaking charge separation (SB-CS) dynamics and mechanism, three 9,10-bis((4-hexylphenyl)ethynyl)anthracene dimers with varying distances, viz., a single-bond linked dimer (0-dimer), a phenylene linked dimer (1-dimer) and a para-biphenylene linked dimer (2-dimer), were synthesized and studied systematically using steady-state and transient spectroscopy. Steady-state absorption spectra revealed that the electronic coupling strength decreased gradually with the increase of the inter-chromophore distance, and the transition of S0→S1 includes the dark charge transfer (CT) excitation. fs-TA spectra demonstrated that SB-CS could be conducted in both weakly and highly polar solvents for 0-dimer, but the SB-CS dynamics has a significant difference. In weakly polar solvents, SB-CS only produces the partial CT (PCT) state, but it could generate the CT state via the PCT state in highly polar solvent. In comparison, SB-CS is only proceeded in highly polar solvents in 1-dimer and 2-dimer to produce the CT state directly. These results demonstrate that the SB-CS dynamics is strongly dependent on the inter-chromophore electronic coupling, and the relatively strong electronic coupling is crucial for the occurrence of SB-CS in weakly polar environment that is commonly presented in photoelectric devices.
Collapse
Affiliation(s)
- Xianyuan Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liping Lv
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tianyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chen Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaonan Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Boce Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Linglong Tang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Zhou Z, Gai L, Xu LW, Guo Z, Lu H. Disilane-bridged architectures: an emerging class of molecular materials. Chem Sci 2023; 14:10385-10402. [PMID: 37799998 PMCID: PMC10548527 DOI: 10.1039/d3sc02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Disilanes are organosilicon compounds that contain saturated Si-Si bonds. The structural characteristics of Si-Si single bonds resemble those of C-C single bonds, but their electronic structure is more similar to that of C[double bond, length as m-dash]C double bonds, as Si-Si bonds have a higher HOMO energy level. These organosilicon compounds feature unique intramolecular σ electron delocalization, low ionization potentials, polarizable electronic structure, and σ-π interaction. It has been demonstrated that the employment of disilane units (Si-Si) is a versatile and effective approach for finely adjusting the photophysical properties of organic materials in both solution and solid states. In this review, we present and discuss the structure, properties, and relationships of novel σ-π-conjugated hybrid architectures with saturated Si-Si σ bonds. The application of disilane-bridged σ-conjugated compounds as optoelectronic materials, multifunctional solid-state emitters, CPL, and non-linear optical and stimuli-responsive materials is also reviewed.
Collapse
Affiliation(s)
- Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| |
Collapse
|
3
|
Bai QQ, Fang ZJ, Wang XF, Zhang Y, Zhao XH, Zhao PD. Charge Transfer and Level Lifetime in Molecular Photon-Absorption upon the Quantum Impedance Lorentz Oscillator. ACS OMEGA 2023; 8:19950-19962. [PMID: 37305236 PMCID: PMC10249119 DOI: 10.1021/acsomega.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
On the strength of the new quantum impedance Lorentz oscillator (QILO) model, a charge-transfer method in molecular photon-absorption is proposed and imaged via the numerical simulations of 1- and 2-photon-absorption (1PA and 2PA) behaviors of the organic compounds LB3 and M4 in this paper. According to the frequencies at the peaks and the full width at half-maximums (FWHMs) of the linear absorptive spectra of the two compounds, we first calculate the effective quantum numbers before and after the electronic transitions. Thus, we obtain the molecular average dipole moments, i.e., 1.8728 × 10-29 C·m (5.6145 D) for LB3 and 1.9626 × 10-29 C·m (5.8838 D) for M4 in the ground state in the tetrahydrofuran (THF) solvent. Then, the molecular 2PA cross sections corresponding to wavelength are theoretically inferred and figured out by QILO. As a result, the theoretical cross sections turn out to be in good agreement with the experimental ones. Our results reveal such a charge-transfer image in 1PA near wavelength 425 nm, where an atomic electron of LB3 jumps from the ground-state ellipse orbit with the semimajor axis ai = 1.2492 × 10-10m = 1.2492 Å and semiminor axis bi = 0.4363 Å to the excited-state circle (aj = bj = 2.5399 Å). In addition, during its 2PA process, the same transitional electron in the ground state is excited to the elliptic orbit with aj = 2.5399 Å and bj =1.3808 Å, in which the molecular dipole moment reaches as high as 3.4109 × 10-29 C·m (10.2256 D). In addition, we obtain a level-lifetime formula with the microparticle collision idea of thermal motion, which indicates that the level lifetime is proportional (not inverse) to the damping coefficient or FWHM of an absorptive spectrum. The lifetimes of the two compounds at some excited states are calculated and presented. This formula may be used as an experimental method to verify 1PA and 2PA transition selection rules. The QILO model exhibits the advantage of simplifying the calculation complexity and reducing the high cost associated with the first principle in dealing with quantum properties of optoelectronic materials.
Collapse
Affiliation(s)
- Qi-Qi Bai
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Zheng-Ji Fang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Xiao-Feng Wang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yong Zhang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
- Hebei
Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Xing-Hua Zhao
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Pei-De Zhao
- School
of Science, Hebei University of Technology, Tianjin 300401, China
- Hebei
Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| |
Collapse
|
4
|
Micikas RJ, Acharyya A, Smith AB, Gai F. Synthesis and characterization of the fluorescence utility of two Visible-Light-Absorbing tryptophan derivatives. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Jiang Q, Gittens AF, Wong S, Siegler MA, Klausen RS. Highly selective addition of cyclosilanes to alkynes enabling new conjugated materials. Chem Sci 2022; 13:7587-7593. [PMID: 35872824 PMCID: PMC9241958 DOI: 10.1039/d2sc01690g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Hybrid σ,π-conjugated cyclosilanes were synthesized via highly selective hydrosilylation and have shown great potentials as building blocks to construct novel conjugated polymers with control of tacticity.
Collapse
Affiliation(s)
- Qifeng Jiang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Alexandra F. Gittens
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Sydnee Wong
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Rebekka S. Klausen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| |
Collapse
|