1
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Dodero-Rojas E, Mello MF, Brahmachari S, Oliveira Junior AB, Contessoto VG, Onuchic JN. PyMEGABASE: Predicting cell-type-specific structural annotations of chromosomes using the epigenome. J Mol Biol 2023:168180. [PMID: 37302549 DOI: 10.1016/j.jmb.2023.168180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The folding patterns of interphase genomes in higher eukaryotes, as obtained from DNA-proximity-ligation or Hi-C experiments, are used to classify loci into structural classes called compartments and subcompartments. These structurally annotated (sub)compartments are known to exhibit specific epigenomic characteristics and cell-type-specific variations. To explore the relationship between genome structure and the epigenome, we present PyMEGABASE (PYMB), a maximum-entropy-based neural network model that predicts (sub)compartment annotations of a locus based solely on the local epigenome, such as ChIP-Seq of histone post-translational modifications. PYMB builds upon our previous model while improving robustness, capability to handle diverse inputs and user-friendly implementation. We employed PYMB to predict subcompartments for over a hundred human cell types available in ENCODE, shedding light on the links between subcompartments, cell identity, and epigenomic signals. The fact that PYMB, trained on data for human cells, can accurately predict compartments in mice suggests that the model is learning underlying physicochemical principles transferable across cell types and species. Reliable at higher resolutions (up to 5 kbp), PYMB is used to investigate compartment-specific gene expression. Not only can PYMB generate (sub)compartment information without Hi-C experiments, but its predictions are also interpretable. Analyzing PYMB's trained parameters, we explore the importance of various epigenomic marks in each subcompartment prediction. Furthermore, the predictions of the model can be used as input for OpenMiChroM software, which has been calibrated to generate three-dimensional structures of the genome. Detailed documentation of PYMB is available at https://pymegabase.readthedocs.io, including an installation guide using pip or conda, and Jupyter/Colab notebook tutorials.
Collapse
Affiliation(s)
| | - Matheus F Mello
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | | | | | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Physics & Astronomy, Rice University, Houston, TX, USA; Department of Chemistry, Rice University, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Ruben BS, Brahmachari S, Contessoto VG, Cheng RR, Oliveira Junior AB, Di Pierro M, Onuchic JN. Structural reorganization and relaxation dynamics of axially stressed chromosomes. Biophys J 2023; 122:1633-1645. [PMID: 36960531 PMCID: PMC10183323 DOI: 10.1016/j.bpj.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Chromosomes endure mechanical stresses throughout the cell cycle; for example, resulting from the pulling of chromosomes by spindle fibers during mitosis or deformation of the nucleus during cell migration. The response to physical stress is closely related to chromosome structure and function. Micromechanical studies of mitotic chromosomes have revealed them to be remarkably extensible objects and informed early models of mitotic chromosome organization. We use a data-driven, coarse-grained polymer modeling approach to explore the relationship between the spatial organization of individual chromosomes and their emergent mechanical properties. In particular, we investigate the mechanical properties of our model chromosomes by axially stretching them. Simulated stretching led to a linear force-extension curve for small strain, with mitotic chromosomes behaving about 10-fold stiffer than interphase chromosomes. Studying their relaxation dynamics, we found that chromosomes are viscoelastic solids with a highly liquid-like, viscous behavior in interphase that becomes solid-like in mitosis. This emergent mechanical stiffness originates from lengthwise compaction, an effective potential capturing the activity of loop-extruding SMC complexes. Chromosomes denature under large strains via unraveling, which is characterized by opening of large-scale folding patterns. By quantifying the effect of mechanical perturbations on the chromosome's structural features, our model provides a nuanced understanding of in vivo mechanics of chromosomes.
Collapse
Affiliation(s)
- Benjamin S Ruben
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Biophysics PhD Program, Harvard University, Cambridge, Massachusetts.
| | | | | | - Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | | | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts; Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics and Astronomy, Department of Chemistry, Department of BioSciences, Rice University, Houston, Texas
| |
Collapse
|
5
|
Contessoto VG, Dudchenko O, Aiden EL, Wolynes PG, Onuchic JN, Di Pierro M. Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues. Nat Commun 2023; 14:326. [PMID: 36658127 PMCID: PMC9852290 DOI: 10.1038/s41467-023-35909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
We use data-driven physical simulations to study the three-dimensional architecture of the Aedes aegypti genome. Hi-C maps exhibit both a broad diagonal and compartmentalization with telomeres and centromeres clustering together. Physical modeling reveals that these observations correspond to an ensemble of 3D chromosomal structures that are folded over and partially condensed. Clustering of the centromeres and telomeres near the nuclear lamina appears to be a necessary condition for the formation of the observed structures. Further analysis of the mechanical properties of the genome reveals that the chromosomes of Aedes aegypti, by virtue of their atypical structural organization, are highly sensitive to the deformation of the nuclei. This last finding provides a possible physical mechanism linking mechanical cues to gene regulation.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Instituto de Biociências, Letras e Ciências Exatas, UNESP - Univ. Estadual Paulista, Departamento de Física, São José do Rio Preto, SP, Brazil.
| | - Olga Dudchenko
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erez Lieberman Aiden
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics & Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics & Astronomy, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA, USA.
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|