1
|
Singh M, Hashimoto M, Katayama K, Furutani Y, Kandori H. Internal Proton Transfer in the Activation of Heliorhodopsin. J Mol Biol 2024; 436:168273. [PMID: 37709010 DOI: 10.1016/j.jmb.2023.168273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Heliorhodopsin (HeR), a recently discovered new rhodopsin family, contains a single counterion of the protonated Schiff base, E108 in HeR from Thermoplasmatales archaeon SG8-52-1 (TaHeR). Upon light absorption, the M and O intermediates form in HeRs, as well as type-1 microbial rhodopsins, indicating that the proton transfer from the Schiff base leads to the activation of HeRs. The present flash photolysis study of TaHeR in the presence of a pH-sensitive dye showed that TaHeR contains a proton-accepting group (PAG) inside protein. Comprehensive mutation study of TaHeR found the E108D mutant abolishing the M formation, which is not only at pH 8, but also at pH 9 and 10. The lack of M observation does not originate from the short lifetime of the M intermediate in E108D, as FTIR spectroscopy revealed that a red-shifted K-like intermediate is long lived in E108D. It is likely that the K-like intermediate returns to the unphotolyzed state without internal proton transfer in E108D. E108 and D108 are the Schiff base counterions of the wild-type and E108D mutant TaHeR, respectively, whereas small difference in length of side chains determine internal proton transfer reaction from the Schiff base. Based on the present finding, we propose that the internal water cluster (four water molecules) constitutes PAG in the M intermediate of TaHeR. In the wild type TaHeR, a protonated water cluster is stabilized by forming a salt bridge with E108. In contrast, slightly shortened counterion (D108) cannot stabilize the protonated water cluster in E108D, and thus impairs internal proton transfer from the Schiff base.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Masanori Hashimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
2
|
Suzuki S, Kumagai S, Nagashima T, Yamazaki T, Okitsu T, Wada A, Naito A, Katayama K, Inoue K, Kandori H, Kawamura I. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Biophys Chem 2023; 296:106991. [PMID: 36905840 DOI: 10.1016/j.bpc.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Heliorhodopsin (HeR) is a seven-helical transmembrane protein with a retinal chromophore that corresponds to a new rhodopsin family. HeR from the archaebacterium Thermoplasmatales archaeon (TaHeR) exhibits unique features, such as the inverted protein orientation in the membrane compared to other rhodopsins and a long photocycle. Here, we used solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the 13C and 15N NMR signals of the retinal chromophore and protonated Schiff base (RPSB) in TaHeR embedded in POPE/POPG membrane. Although the 14- and 20-13C retinal signals indicated 13-trans/15-anti (all-trans) configurations, the 20-13C chemical shift value was different from that of other microbial rhodopsins, indicating weakly steric hinderance between Phe203 and the C20 methyl group. 15N RPSB/λmax plot deviated from the linear correlation based on retinylidene-halide model compounds. Furthermore, 15N chemical shift anisotropy (CSA) suggested that Ser112 and Ser234 polar residues distinguish the electronic environment tendencies of RPSB from those of other microbial rhodopsins. Our NMR results revealed that the retinal chromophore and the RPSB in TaHeR exhibit unique electronic environments.
Collapse
Affiliation(s)
- Shibuki Suzuki
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Sari Kumagai
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
3
|
Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. Ultrafast protein response in the Pfr state of Cph1 phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:919-930. [PMID: 36653574 DOI: 10.1007/s43630-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Maria Andrea Mroginski
- Institut Für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Shim JG, Cho SG, Kim SH, Chuon K, Meas S, Choi A, Jung KH. Heliorhodopsin Helps Photolyase to Enhance the DNA Repair Capacity. Microbiol Spectr 2022; 10:e0221522. [PMID: 36219103 PMCID: PMC9769723 DOI: 10.1128/spectrum.02215-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/24/2022] [Indexed: 01/06/2023] Open
Abstract
Light quality is a significant factor for living organisms that have photosensory systems, such as rhodopsin, a seven alpha-helical transmembrane protein with the retinal chromophore. Here, we report, for the first time, the function of new rhodopsin, which is an inverted 7-transmembrane protein, isolated from Trichococcus flocculiformis. T. flocculiformis heliorhodopsin (TfHeR) works as a regulatory helper rhodopsin that binds with class 2 cyclobutane pyrimidine dimer (CPDII) photolyase to broaden the spectrum and upregulate DNA repair activity. We have confirmed their interaction through isothermal titration calorimetry (dissociation constant of 21.7 μM) and identified the charged residues for the interaction. Based on in vivo and in vitro experiments, we showed that the binding of heliorhodopsin with photolyase improved photolyase activity by about 3-fold to repair UV-caused DNA damage. Also, the DNA repair activity of TfHeR/T. flocculiformis photolyase (TfPHR) was observed in the presence of green light. Our results suggested that heliorhodopsin directly controls the activity of photolyase and coevolves to broaden the activity spectrum by protein-protein interaction. IMPORTANCE This study reports a function for Heliorhodopsin working as a regulatory helper rhodopsin that with CPDII photolyase to broaden the spectrum and upregulating the DNA repair activity. Our results suggested that heliorhodopsin directly controls photolyase activity and coevolves to broaden the DNA repair capacity by protein-protein interaction.
Collapse
Affiliation(s)
- Jin-gon Shim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul, South Korea
- Research Institute for Basic Science, Sogang University, Seoul, South Korea
| | - Se-Hwan Kim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kimleng Chuon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Ahreum Choi
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang-gun, Gyeongsangbuk-do, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, South Korea
| |
Collapse
|
5
|
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, Ernst OP. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Sci Rep 2022; 12:13955. [PMID: 35977989 PMCID: PMC9385722 DOI: 10.1038/s41598-022-17716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Reichenwallner
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paolo De Guzman
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Anling Kuo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|