1
|
Muri R, Rummel C, McKinley R, Rebsamen M, Maissen-Abgottspon S, Kreis R, Radojewski P, Pospieszny K, Hochuli M, Wiest R, Trepp R, Everts R. Transient brain structure changes after high phenylalanine exposure in adults with phenylketonuria. Brain 2024; 147:3863-3873. [PMID: 38723047 PMCID: PMC11604053 DOI: 10.1093/brain/awae139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 11/05/2024] Open
Abstract
Phenylketonuria is a rare metabolic disease resulting from a deficiency of the enzyme phenylalanine hydroxylase. Recent cross-sectional evidence suggests that early-treated adults with phenylketonuria exhibit alterations in cortical grey matter compared to healthy peers. However, the effects of high phenylalanine exposure on brain structure in adulthood need to be further elucidated. In this double-blind, randomized, placebo-controlled crossover trial, we investigated the impact of a 4-week high phenylalanine exposure on the brain structure and its relationship to cognitive performance and metabolic parameters in early-treated adults with phenylketonuria. Twenty-eight adult patients with early-treated classical phenylketonuria (19-48 years) underwent magnetic resonance imaging before and after the 4-week phenylalanine and placebo interventions (four time points). Structural T1-weighted images were preprocessed and evaluated using Direct Cortical Thickness Estimation using Deep Learning-based Anatomy Segmentation and Cortex Parcellation (DL+DiReCT), a deep-learning-based tool for brain morphometric analysis. Cortical thickness, white matter volume and ventricular volume were compared between the phenylalanine and placebo periods. Brain phenylalanine levels were measured using 1H spectroscopy. Blood levels of phenylalanine, tyrosine, and tryptophan were assessed at each of the four time points, along with performance in executive functions and attention. Blood phenylalanine levels were significantly higher after the phenylalanine period (1441 µmol/l) than after the placebo period (873 µmol/l, P < 0.001). Morphometric analyses revealed a statistically significant decrease in cortical thickness in 17 of 60 brain regions after the phenylalanine period compared to placebo. The largest decreases were observed in the right pars orbitalis (point estimate = -0.095 mm, P < 0.001) and the left lingual gyrus (point estimate = -0.070 mm, P < 0.001). Bilateral white matter and ventricular volumes were significantly increased after the phenylalanine period. However, the structural alterations in the phenylalanine-placebo group returned to baseline measures following the washout and placebo period. Additionally, elevated blood and brain phenylalanine levels were related to increased bilateral white matter volume (rs = 0.43 to 0.51, P ≤ 0.036) and decreased cortical thickness [rs = -0.62 to -0.39, not surviving false discovery rate (FDR) correction] after the phenylalanine and placebo periods. Moreover, decreased cortical thickness was correlated with worse cognitive performance after both periods (rs = -0.54 to -0.40, not surviving FDR correction). These findings provide evidence that a 4-week high phenylalanine exposure in adults with phenylketonuria results in transient reductions of the cortical grey matter and increases in white matter volume. Further research is needed to determine the potential long-term impact of high phenylalanine levels on brain structure and function in adults with phenylketonuria.
Collapse
Affiliation(s)
- Raphaela Muri
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Richard McKinley
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Stephanie Maissen-Abgottspon
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Roland Kreis
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Katarzyna Pospieszny
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Regula Everts
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Brandan MA, Pérez HA, Disalvo A, de Los A Frías M. Interaction of L-phenylalanine with carbonyl groups in mixed lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184328. [PMID: 38688404 DOI: 10.1016/j.bbamem.2024.184328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The interaction of L-Phe with the membrane components, i.e., lipids and proteins, has been discussed in the current literature due to the interest to understand the effect of single amino acids in relation to the formation of amyloid aggregates. In the present work, it is shown that L-Phe interacts with 9:1 DMPC (1,2-dimyristoyl-sn-glycero-3 phosphocholine)/DPPC (1,2-dipalmitoyl-sn-glycero-3 phosphocholine) mixtures but not in the 1:9 one. An important observation is that the interaction disappears when DPPC is replaced by diether PC (2-di-O-hexadecyl-sn-glycero-3-phosphocholine) a lipid lacking carbonyl groups (CO). This denotes that CO groups may interact specifically with L-Phe in accordance with the appearance of a new peak observed by Infrared spectroscopy (FTIR-ATR). The interaction of L-Phe affects the compressibility pattern of the 9:1 DMPC/DPPC mixture which is congruent with the changes observed by Raman spectra. The specific interaction of L-Phe with CO, propagates to phosphate and choline groups in this particular mixture as analyzed by FTIR-ATR spectroscopy and is absent when DMPC is dopped with diether PC.
Collapse
Affiliation(s)
- María A Brandan
- Laboratory of Biointerphases and Biomimetic Systems, Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - Hugo A Pérez
- Laboratory of Biointerphases and Biomimetic Systems, Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - Aníbal Disalvo
- Laboratory of Biointerphases and Biomimetic Systems, Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - María de Los A Frías
- Laboratory of Biointerphases and Biomimetic Systems, Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina.
| |
Collapse
|
3
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
4
|
Duncan KM, Trousdale RC, Gonzales CN, Steel WH, Walker RA. l-Phenylalanine Partitioning Mechanisms in Model Biological Membranes. J Phys Chem B 2023. [PMID: 37315336 DOI: 10.1021/acs.jpcb.2c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Time-resolved fluorescence spectroscopy in combination with differential scanning calorimetry (DSC) was used to study the chemical interactions that occur when l-phenylalanine is introduced to solutions containing phosphatidylcholine vesicles. Studies reported in this work address open questions about l-Phe's affinity for lipid vesicle bilayers, the effects of l-Phe partitioning on bilayer properties, l-Phe's solvation within a lipid bilayer, and the amount of l-Phe within that local solvation environment. DSC data show that l-Phe reduces the amount of heat necessary to melt saturated phosphatidylcholine bilayers from their gel to liquid-crystalline state but does not change the transition temperature (Tgel-lc). Time-resolved emission shows only a single l-Phe lifetime at low temperatures corresponding to l-Phe remaining solvated in aqueous solution. At temperatures close to Tgel-lc, a second, shorter lifetime appears that is assigned to l-Phe already embedded within the membrane that becomes hydrated as water starts to permeate the lipid bilayer. This new lifetime is attributed to a conformationally restricted rotamer in the bilayer's polar headgroup region and accounts for up to 30% of the emission amplitude. Results reported for dipalmitoylphosphatidylcholine (DPPC, 16:0) lipid vesicles prove to be general, with similar effects observed for dimyristoylphosphatidylcholine (DMPC, 14:0) and distearoylphosphatidylcholine (DSPC, 18:0) vesicles. Taken together, these results create a complete and compelling picture of how l-Phe associates with model biological membranes. Furthermore, this approach to examining amino acid partitioning into membranes and the resulting solvation forces points to new strategies for studying the structure and chemistry of membrane-soluble peptides and selected membrane proteins.
Collapse
Affiliation(s)
- Katelyn M Duncan
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rhys C Trousdale
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Cristina N Gonzales
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - William H Steel
- Department of Chemistry, York College of Pennsylvania, York, Pennsylvania 17403, United States
| | - Robert A Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
5
|
Nandi S, Sarkar N. A review on recent application of proton transfer photophysics of bipyridine-3,3′-diol in organized assemblies. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Nandi S, Mukhopadhyay A, Nandi PK, Bera N, Hazra R, Chatterjee J, Sarkar N. Amyloids Formed by Nonaromatic Amino Acid Methionine and Its Cross with Phenylalanine Significantly Affects Phospholipid Vesicle Membrane: An Insight into Hypermethioninemia Disorder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8252-8265. [PMID: 35758025 DOI: 10.1021/acs.langmuir.2c00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incorrect metabolic breakdown of the nonaromatic amino acid methionine (Met) leads to the disorder called hypermethioninemia via an unknown mechanism. To understand the molecular level pathogenesis of this disorder, we prepared a DMPC lipid membrane, the mimicking setup of the cell membrane, and explored the effect of the millimolar level of Met on it. We found that Met forms toxic fibrillar aggregates that disrupt the rigidity of the membrane bilayer, and increases the dynamic response of water molecules surrounding the membrane as well as the heterogeneity of the membrane. Such aggregates strongly deform red blood cells. This opens the requirement to consider therapeutic antagonists either to resist or to inhibit the toxic amyloid aggregates against hypermethioninemia. Moreover, such disrupting effect on membrane bilayer and cytotoxicity along with deformation effect on RBC by the cross amyloids of Met and Phenylalanine (Phe) was found to be most virulent. This exclusive observation of the enhanced virulent effect of the cross amyloids is expected to be an informative asset to explain the coexistence of two amyloid disorders.
Collapse
|
7
|
Li L, Fang Y, Xia Y, Bo C, Fan Y. Monosaccharides driving the formation of conjugated linoleic acid vesicles in near-neutral solutions via weak noncovalent bonding interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Nandi S, Pyne A, Layek S, Arora C, Sarkar N. The Dietary Nutrient Trimethylamine N-Oxide Affects the Phospholipid Vesicle Membrane: Probable Route to Adverse Intake. J Phys Chem Lett 2021; 12:12411-12418. [PMID: 34939822 DOI: 10.1021/acs.jpclett.1c03201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trimethylamine N-oxide (TMAO), a choline-containing dietary supplement obtained from red meat, egg, and other animal resources, on excess accumulation is known to cause cardiovascular diseases (CVDs) like atherosclerosis. To understand the molecular mechanism of the pathogenesis of TMAO-induced CVDs, we have set up 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane in water that mimicked the endothelial cell membrane-blood interface of the artery wall and investigated the effect of an elevated concentration of TMAO on the membrane. We found that TMAO exerts an "action at a distance" mechanism through electrostatic force of attraction that significantly alters various properties of the membrane, like hydrophobicity, lateral organization, and interfacial water dynamics, which elevates the rigidity of the membrane. Such an effect was found to be further amplified in the presence of known causes of CVDs, i.e., high content of cholesterol (Chol). Therefore, TMAO-induced membrane rigidity may restrict the intrinsic elasticity of an artery membrane, expected to be introducing "hardening of the arteries", which makes the membrane atherosclerotic.
Collapse
Affiliation(s)
- Sourav Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Chirag Arora
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| |
Collapse
|
9
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
Nandi S, Layek S, Nandi PK, Bera N, Hazra R, Sarkar N. Self-assembly of artificial sweetener aspartame adversely affects phospholipid membranes: plausible reason for its deleterious effects. Chem Commun (Camb) 2021; 57:10532-10535. [PMID: 34553202 DOI: 10.1039/d1cc04482f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prolonged intake of the artificial sweetener aspartame is known to have deleterious effects. Our biophysical experimentations indicate that aspartame forms self-assembled cytotoxic fibrillar etiologies that affect the intrinsic integrity of the phospholipid membrane bilayer through electrostatic interaction and hydrophobic insertion, thereby making the membrane less rigid and more heterogeneous.
Collapse
Affiliation(s)
- Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|