1
|
Gatin-Fraudet B, Seifert J, Sarach K, Olesen CH, Birke R, Milles S, Birol M, Lehmann M, Broichhagen J. Deuterated oxazines are bright near-infrared fluorophores for mitochondrial imaging and single molecule spectroscopy. Chem Commun (Camb) 2025; 61:3540-3543. [PMID: 39912228 DOI: 10.1039/d4cc03807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Bright near-infrared fluorophores are in demand for microscopy. We showcase a deuterated oxazine being 23% brighter vs. ATTO700. With a longer lifetime of 1.85 nanoseconds, we find the best-in-class SulfoOxazine700-d10 to stain mitochondria for confocal microscopy, and demonstrate unaffected diffusion properties in single molecule fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Blaise Gatin-Fraudet
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Julius Seifert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Kris Sarach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Christina Holmboe Olesen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Ramona Birke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Melissa Birol
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
2
|
Chen J, Gu D, Qi H, Sun B, Wang X. Fluorescence of Aqueous Assemblies Regulated by Integral Water. Chemistry 2025:e202404240. [PMID: 39887754 DOI: 10.1002/chem.202404240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Water is an integral and functional component for aqueous assemblies of POSS-NDI-POSS molecules. Water serves not only as a solvent but also as an integral component (interstitial water) in aqueous colloids self-assembled from POSS-NDI-POSS (POSS = polyhedral oligomeric silsesquioxanes, NDI = naphthalene diimide). The interstitial water confined within these colloids is attributed to the steric hindrance of the bulky POSS groups, which dissipates energy and quenches the fluorescence (FL). Control experiments with NDI molecules bearing less steric side groups (propyl or octyl), namely C3-NDI-C3 and C8-NDI-C8, confirm this role of water in structural assembly and optical function. This discovery opens new possibilities for the innovation of aqueous materials.
Collapse
Affiliation(s)
- Jia Chen
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai, China
| | - Dandan Gu
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai, China
| | - Haohan Qi
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai, China
| | - Bin Sun
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai, China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
3
|
Briant L, Maillard J, Fürstenberg A. Super-resolution imaging with a cucurbituril-encapsulated fluorophore. Chem Commun (Camb) 2024; 60:13943-13946. [PMID: 39574385 PMCID: PMC11563205 DOI: 10.1039/d4cc05274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
Red-emitting oxazine fluorophores are shown to bind to cucurbit[7]uril (CB[7]) with high affinity. Their fluorescence quantum yield and lifetime are thereby enhanced owing to shielding of the dyes from water. Using CB[7] as an imaging additive leads to a larger number of photons detected per molecule in super-resolution experiments with the dye ATTO655.
Collapse
Affiliation(s)
- Liza Briant
- Department of Physical Chemistry, University of Geneva, 1211 Genève 4, Switzerland.
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Genève 4, Switzerland
| | - Jimmy Maillard
- Department of Physical Chemistry, University of Geneva, 1211 Genève 4, Switzerland.
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Genève 4, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva, 1211 Genève 4, Switzerland.
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Genève 4, Switzerland
| |
Collapse
|
4
|
Yoon S, Teets TS. Ancillary Ligand Steric Effects and Cyclometalating Ligand Substituents Control Excited-State Decay Kinetics in Red-Phosphorescent Platinum Complexes. J Am Chem Soc 2024. [PMID: 39357044 DOI: 10.1021/jacs.4c10110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Achieving high-efficiency red phosphorescence remains a significant challenge, especially in cyclometalated platinum complexes where radiative rates are inherently slower than their iridium counterparts. In this work, six red-emitting cyclometalated platinum complexes of the formula Pt(C∧N)[(Ar)acNac] (C∧N is the cyclometalating ligand, and (Ar)acNac is an aryl-substituted β-ketoiminate ancillary ligand) were synthesized and characterized. Two C∧N ligands were employed, 1-phenylisoquinoline (piq) and its cyano-substituted analogue 1-phenylisoquinoline-4-carbonitrile (piqCN), which both result in red phosphorescence in cyclometalated platinum complexes. These were paired with three (Ar)acNac ligands that are sterically differentiated via the N-aryl group, which is phenyl in the unsubstituted analogue (Ph)acNac and 2,6-dimethylphenyl or 2,6-diisopropylphenyl in the sterically encumbered analogues. An in-depth photophysical analysis of all compounds was performed and compared to the related compounds with the acetylacetonate (acac) ancillary ligand. While quantum yields are modest in the unsubstituted (Ph)acNac complexes, steric bulk on the β-ketoiminate has a pronounced effect on the excited-state dynamics and can lead to photoluminescence quantum yields of more than 0.50 in both solution and transparent polymer films, with the photoluminescence λmax ∼ 630 nm. We show that both steric effects on the electron-rich β-ketoiminate ancillary ligands and the cyano substituent on the cyclometalating ligand play a role in achieving high-efficiency phosphorescence in the red region.
Collapse
Affiliation(s)
- Sungwon Yoon
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Jana S, Wöll D. Moisture changes inside hydrogel particles during their drying process investigated with fluorescence lifetime imaging. Phys Chem Chem Phys 2024; 26:23250-23255. [PMID: 39192777 DOI: 10.1039/d4cp02684e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The properties of hydrogels and microgels, i.e. hydrogel particles, depend strongly on their water content. Based on our previously developed method to access the local water content in microgels, we performed fluorescence lifetime microscopy measurements at different stages of drying poly(N-isopropylacrylamide) (PNIPAM) microgels under ambient conditions. For this purpose, the red-emitting dye ATTO 655 was covalently attached to the microgels. Its emission is quenched by water molecules due to an energy transfer from the first excited state of the dye to a vibrational level of the water molecules. The quenching constant or, equivalently, the fluorescence lifetime, gives direct access to the local water concentration. We measured the fluorescence lifetime after spin-coating, reswelling and at different times of subsequent drying to follow the changes of water content during this process. We found that the microgels are not totally dry after spin coating, but drying them to their equilibrium moisture under ambient temperature and humidity conditions requires several hours. Additionally, we determined the moisture inside microgels in equilibrium at different air humidities. In summary, the method allows for a detailed investigation of the moisture inside hydrogels and gives straight-forward access to in situ and operando measurements of hydrogel systems.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Lei Y, Wang Y, Hill SK, Cheng Z, Song Q, Perrier S. Supra-Fluorophores: Ultrabright Fluorescent Supramolecular Assemblies Derived from Conventional Fluorophores in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401346. [PMID: 38416605 PMCID: PMC11475621 DOI: 10.1002/adma.202401346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Fluorescent organic nanoparticles (NPs) with exceptional brightness hold significant promise for demanding fluorescence bioimaging applications. Although considerable efforts are invested in developing novel organic dyes with enhanced performance, augmenting the brightness of conventional fluorophores is still one of the biggest challenges to overcome. This study presents a supramolecular strategy for constructing ultrabright fluorescent nanoparticles in aqueous media (referred to as "Supra-fluorophores") derived from conventional fluorophores. To achieve this, this course has employed a cylindrical nanoparticle with a hydrophobic microdomain, assembled by a cyclic peptide-diblock copolymer conjugate in water, as a supramolecular scaffold. The noncovalent dispersion of fluorophore moieties within the hydrophobic microdomain of the scaffold effectively mitigates the undesired aggregation-caused quenching and fluorescence quenching by water, resulting in fluorescent NPs with high brightness. This strategy is applicable to a broad spectrum of fluorophore families, covering polyaromatic hydrocarbons, coumarins, boron-dipyrromethenes, cyanines, xanthenes, and squaraines. The resulting fluorescent NPs demonstrate high fluorescence quantum yield (>30%) and brightness per volume (as high as 12 060 m-1 cm-1 nm-3). Moreover, high-performance NPs with emission in the NIR region are constructed, showcasing up to 20-fold increase in both brightness and photostability. This Supra-fluorophore strategy offers a versatile and effective method for transforming existing fluorophores into ultrabright fluorescent NPs in aqueous environments, for applications such as bioimaging.
Collapse
Affiliation(s)
- Yuqing Lei
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Yuqian Wang
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Sophie K. Hill
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Zihe Cheng
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Qiao Song
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVIC 3052Australia
| |
Collapse
|
7
|
Gamage RS, Smith BD. Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:384-397. [PMID: 38817322 PMCID: PMC11134606 DOI: 10.1021/cbmi.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Indocyanine Blue (ICB) is the deep-red pentamethine analogue of the widely used clinical near-infrared heptamethine cyanine dye Indocyanine Green (ICG). The two fluorophores have the same number of functional groups and molecular charge and vary only by a single vinylene unit in the polymethine chain, which produces a predictable difference in spectral and physicochemical properties. We find that the two dyes can be employed as a complementary pair in diverse types of fundamental and applied fluorescence imaging experiments. A fundamental fluorescence spectroscopy study used ICB and ICG to test a recently proposed Förster Resonance Energy Transfer (FRET) mechanism for enhanced fluorescence brightness in heavy water (D2O). The results support two important corollaries of the proposal: (a) the strategy of using heavy water to increase the brightness of fluorescent dyes for microscopy or imaging is most effective when the dye emission band is above 650 nm, and (b) the magnitude of the heavy water florescence enhancement effect for near-infrared ICG is substantially diminished when the ICG surface is dehydrated due to binding by albumin protein. Two applied fluorescence imaging studies demonstrated how deep-red ICB can be combined with a near-infrared fluorophore for paired agent imaging in the same living subject. One study used dual-channel mouse imaging to visualize increased blood flow in a model of inflamed tissue, and a second mouse tumor imaging study simultaneously visualized the vasculature and cancerous tissue in separate fluorescence channels. The results suggest that ICB and ICG can be incorporated within multicolor fluorescence imaging methods for perfusion imaging and hemodynamic characterization of a wide range of diseases.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Jana S, Nevskyi O, Höche H, Trottenberg L, Siemes E, Enderlein J, Fürstenberg A, Wöll D. Local Water Content in Polymer Gels Measured with Super-Resolved Fluorescence Lifetime Imaging. Angew Chem Int Ed Engl 2024; 63:e202318421. [PMID: 38165135 DOI: 10.1002/anie.202318421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Water molecules play an important role in the structure, function, and dynamics of (bio-) materials. A direct access to the number of water molecules in nanoscopic volumes can thus give new molecular insights into materials and allow for fine-tuning their properties in sophisticated applications. The determination of the local water content has become possible by the finding that H2 O quenches the fluorescence of red-emitting dyes. Since deuterated water, D2 O, does not induce significant fluorescence quenching, fluorescence lifetime measurements performed in different H2 O/D2 O-ratios yield the local water concentration. We combined this effect with the recently developed fluorescence lifetime single molecule localization microscopy imaging (FL-SMLM) in order to nanoscopically determine the local water content in microgels, i.e. soft hydrogel particles consisting of a cross-linked polymer swollen in water. The change in water content of thermo-responsive microgels when changing from their swollen state at room temperature to a collapsed state at elevated temperature could be analyzed. A clear decrease in water content was found that was, to our surprise, rather uniform throughout the entire microgel volume. Only a slightly higher water content around the dye was found in the periphery with respect to the center of the swollen microgels.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Oleksii Nevskyi
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Hannah Höche
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Leon Trottenberg
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Eric Siemes
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077, Göttingen, Germany
| | - Alexandre Fürstenberg
- Department of Physical Chemistry and Department of Inorganic and Analytical Chemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| |
Collapse
|
9
|
Li SY, Wang WL, Wang C, Sun R, Ge JF. Improved emission performance of benzo[ a]phenoxazine in aqueous solution through host-guest interaction. Org Biomol Chem 2023; 21:8084-8088. [PMID: 37768024 DOI: 10.1039/d3ob01427d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
To evaluate the contribution of host-guest chemistry in fluorescence enhancement under aqueous conditions, two benzo[a]phenoxazine derivatives with the adamantyl group were prepared. After they formed stable complexes with methyl-β-cyclodextrin, their emissions at 625-825 nm were greatly increased and fluorescence quantum yields reached 11.5-12.6% in aqueous solution. Furthermore, they were successfully applied in fluorescence labeling of organelles in HeLa cells.
Collapse
Affiliation(s)
- Shu-Yi Li
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Wen-Li Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
10
|
Usoltsev SD, Raitman OA, Shokurov AV, Marfin YS. Variety of steady and excited state interactions in BODIPY aggregates: photophysics in antisolvent systems and floating layers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Sachan SK, Anantharaman G. Mixed-Valent Stellated Cuboctahedral Cu(2,4-Imdb)-MOF for Trace Water Detection. Inorg Chem 2022; 61:18340-18345. [DOI: 10.1021/acs.inorgchem.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sharad Kumar Sachan
- Indian Institute of Technology Kanpur (IITK), Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
12
|
Chong J, Besnard C, Cruz CM, Piguet C, Jiménez JR. Heteroleptic mer-[Cr(N ∩N ∩N)(CN) 3] complexes: synthetic challenge, structural characterization and photophysical properties. Dalton Trans 2022; 51:4297-4309. [PMID: 35195140 PMCID: PMC8922558 DOI: 10.1039/d2dt00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile. The heteroleptic mer-[Cr(L)(CN)3] (L = tpy, ddpd, dqp) complexes with their C2v-symmetrical [CrC3N3] luminescent chromophores represent the missing links between pseudo-octahedral [CrN6] and [CrC6] units found in their well-known homoleptic parents.![]()
Collapse
Affiliation(s)
- Julien Chong
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. .,Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química" (UEQ), Avda. Fuentenueva, E-18071 Granada, España.
| |
Collapse
|