1
|
Xie J, Wang Z, Zhu R, Jiang J, Weng TC, Ren Y, Han S, Huang Y, Liu W. Investigation of Excited-State Intramolecular Proton Transfer and Structural Dynamics in Bis-Benzimidazole Derivative (BBM). Int J Mol Sci 2023; 24:ijms24119438. [PMID: 37298391 DOI: 10.3390/ijms24119438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The bis-benzimidazole derivative (BBM) molecule, consisting of two 2-(2'-hydroxyphenyl) benzimidazole (HBI) halves, has been synthesized and successfully utilized as a ratiometric fluorescence sensor for the sensitive detection of Cu2+ based on enol-keto excited-state intramolecular proton transfer (ESIPT). In this study, we strategically implement femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, aided by quantum chemical calculations to investigate the detailed primary photodynamics of the BBM molecule. The results demonstrate that the ESIPT from BBM-enol* to BBM-keto* was observed in only one of the HBI halves with a time constant of 300 fs; after that, the rotation of the dihedral angle between the two HBI halves generated a planarized BBM-keto* isomer in 3 ps, leading to a dynamic redshift of BBM-keto* emission.
Collapse
Affiliation(s)
- Junhan Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
2
|
Pu R, Wang Z, Zhu R, Jiang J, Weng TC, Huang Y, Liu W. Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2023; 14:809-816. [PMID: 36655842 DOI: 10.1021/acs.jpclett.2c03535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototherapy is an efficient and safe way to reduce high levels of free 4Z,15Z-bilirubin (ZZ-BR) in the serum of newborns. The success of BR phototherapy lies in photoinduced configurational and structural isomerization processes that form excretable isomers. However, the physical picture of photoinduced photoisomerization of ZZ-BR is still unclear. Here, we strategically implement tunable femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, assisted by quantum chemical calculations, to dissect the detailed primary configurational isomerization dynamics of free ZZ-BR in organic solvents. The results of this study demonstrate that upon photoexcitation, ultrafast configurational isomerization proceeds by a volume-conserving "hula twist", followed by intramolecular hydrogen-bond distortion and large-scale rotation of the two dipyrrinone halves of the ZZ-BR isomer in a few picoseconds. After that, most of the population recovers back to ZZ-BR, and a very small amount is converted into stable BR isomers via structural isomerization.
Collapse
Affiliation(s)
- Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
3
|
Li S, Tang W, Duan X. A fluorene–thiophene oligomer turn-on fluorescence probe with high-fold fluorescence enhancement for acetaldehyde dehydrogenase detection in cells. NEW J CHEM 2023; 47:545-549. [DOI: 10.1039/d2nj04778k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A turn-on fluorescence probe with 365-fold fluorescence enhancement and 9.5-fold fluorescence QY increase after ALDH oxidization, quick response (5 min), and high sensitivity was developed for acetaldehyde dehydrogenase detection in living cells.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
4
|
Wei L, Sun T, Shi Z, Xu Z, Wen W, Jiang S, Zhao Y, Ma Y, Zhang YB. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat Commun 2022; 13:7936. [PMID: 36566293 DOI: 10.1038/s41467-022-35674-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Molecular recognition is an attractive approach to designing sensitive and selective sensors for volatile organic compounds (VOCs). Although organic macrocycles and cages have been well-developed for recognising organics by their adaptive pockets in liquids, porous solids for gas detection require a deliberate design balancing adaptability and robustness. Here we report a dynamic 3D covalent organic framework (dynaCOF) constructed from an environmentally sensitive fluorophore that can undergo concerted and adaptive structural transitions upon adsorption of gas and vapours. The COF is capable of rapid and reliable detection of various VOCs, even for non-polar hydrocarbon gas under humid conditions. The adaptive guest inclusion amplifies the host-guest interactions and facilitates the differentiation of organic vapours by their polarity and sizes/shapes, and the covalently linked 3D interwoven networks ensure the robustness and coherency of the materials. The present result paves the way for multiplex fluorescence sensing of various VOCs with molecular-specific responses.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Li J, Pu R, He X, Chen Q, Liu S, Liu W, Li J. A Precipitation-Enhanced Emission (PEE) Strategy for Increasing the Brightness and Reducing the Liver Retention of NIR-II Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204153. [PMID: 36209389 DOI: 10.1002/smll.202204153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The lack of organic fluorophores with high quantum yields (QYs) and low liver retention in the second near-infrared (NIR-II) window has become a bottleneck in the bioimaging field. An approach to address these problems is proposed by encapsulating phosphorylated fluorescent dyes into biodegradable calcium phosphate nanoparticles. First, an NIR-II molecule, LJ-2P, is designed with increased water solubility by introducing two phosphate groups. Meanwhile, LJ-2P co-precipitates with calcium ions to form LJ-2P nanoparticles (NPs). The QYs of LJ-2P NPs in aqueous solution is increased by 36.57-fold to 5.12% compared with that of LJ-2P. This unique phenomenon is named as precipitation-enhanced emission (PEE), whose detailed mechanism is explored by femtosecond transient absorption. It is demonstrated that co-precipitation of LJ-2P with calcium ions changes the micro-environment, which restricts the molecular rotation and reduces the interaction of water molecules, especially the excited-state proton transfer. In addition, due to the pH-sensitive nature, more than 80% of the LJ-2P NPs are metabolized in the liver within 24 h. Based on the excellent optical properties and good biocompatibility, high-contrast vascular visualization and breast tumor detecting are achieved. This strategy can apply to other NIR-II fluorophores to achieve high QYs and low liver retention.
Collapse
Affiliation(s)
- Jinwei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suhong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Fakis M, Petropoulos V, Hrobárik P, Nociarová J, Osuský P, Maiuri M, Cerullo G. Exploring Solvent and Substituent Effects on the Excited State Dynamics and Symmetry Breaking of Quadrupolar Triarylamine End-Capped Benzothiazole Chromophores by Femtosecond Spectroscopy. J Phys Chem B 2022; 126:8532-8543. [PMID: 36256786 DOI: 10.1021/acs.jpcb.2c03103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigate herein the excited state dynamics and symmetry breaking processes in three benzothiazole-derived two-photon absorbing chromophores by femtosecond fluorescence and transient absorption (fs-TA) spectroscopies in solvents of various polarity. The chromophores feature a quasi-quadrupolar D-π-A-π-D architecture comprised of an electron-withdrawing benzothiazole core and lateral triphenylamine donors (Qbtz-H), while the acceptor strength of the central unit is enforced by attached cyano groups (Qbtz-CN) and the electron-donating strength of the arylamine moieties by introduction of peripheral methoxy groups (Qbtz'-CN). Steady state spectroscopy reveals positive solvatochromism, which is mostly pronounced for Qbtz'-CN. Femtosecond spectroscopy of Qbtz-H reveals the coexistence of the Franck-Condon (FC) state and states populated after symmetry breaking (SB) in low-polarity solvents such as toluene and tetrahydrofuran, while the SB state becomes favorable in polar acetonitrile. For the other two molecules possessing a stronger electron-accepting unit and thus more polar excited state, SB takes place even in low-polarity solvents, as shown by fs-TA spectroscopy. Global fitting of the fs-TA spectra together with investigation of the evolution associated spectra (EAS) reveals the existence of an initial FC state in Qbtz-H, in all studied solvents, which relaxes toward Intermediate Charge Transfer (I-CT) and SB states. On the other hand, for Qbtz-CN and Qbtz'-CN in more polar solvents, the FC state undergoes ultrafast relaxation toward symmetry-broken charge transfer (SB-CT) states which in turn show very fast recombination to the ground state. Our measurements confirm that the extent of symmetry breaking is larger for D-π-A-π-D systems with the stronger acceptor core and increases further by increasing electron-donating strength of triarylamine moieties, giving rise to symmetry breaking in these nonionic quadrupolar molecules with ethynylene (triple bond) π-spacers also in less polar solvents.
Collapse
Affiliation(s)
- Mihalis Fakis
- Department of Physics, University of Patras, PatrasGR-26500, Greece
| | - Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Jela Nociarová
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Patrik Osuský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| |
Collapse
|