1
|
Gómez S, Ambrosetti M, Giovannini T, Cappelli C. Close-Up Look at Electronic Spectroscopic Signatures of Common Pharmaceuticals in Solution. J Phys Chem B 2024; 128:2432-2446. [PMID: 38416564 DOI: 10.1021/acs.jpcb.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Simulating electronic properties and spectral signals requires robust computational approaches that need tuning with the system's peculiarities. In this paper, we test implicit and fully atomistic solvation models for the calculation of UV-vis and electronic circular dichroism (ECD) spectra of two pharmaceutically relevant molecules, namely, (2S)-captopril and (S)-naproxen, dissolved in aqueous solution. Room temperature molecular dynamics simulations reveal that these two drugs establish strong contacts with the surrounding solvent molecules via hydrogen bonds. Such specific interactions, which play a major role in the spectral response and are neglected in implicit approaches, are further characterized and quantified with natural bond orbital methods. Our calculations show that simulated spectra, and especially ECD, are in good agreement with experiments solely when conformational and configurational dynamics, mutual polarization, and solute-solvent repulsion effects are considered.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
2
|
Ghorbani M, Dehghan G, Allahverdi A. Concentration-dependent mechanism of the binding behavior of ibuprofen to the cell membrane: A molecular dynamic simulation study. J Mol Graph Model 2023; 124:108581. [PMID: 37536233 DOI: 10.1016/j.jmgm.2023.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Ibuprofen is a commonly used drug for treating headaches, pain, and fever. The lipid bilayer is the primary and most important interface for drugs to interact with biological systems. However, the molecular interactions between ibuprofen and the cell membrane are not well understood. Our findings suggest that the interactions between ibuprofen and the bilayer involve multiple steps and depend on the concentration of the drug. At low concentrations of ibuprofen, it can bind to the surface of the lipid bilayer. The electrostatic and vdW energies of IBU-lipid at 0 ns of the simulation were -22.5 ± 3.2 and -5.9 ± 1.2 kj.mol-1 Fig. 2. In the following, the vdW energy of the IBU-lipid was increased by around -134.6 ± 3.7 kj.mol-1 whereas the electrostatic energy of the IBU-lipid was significantly decreased. This binding is facilitated by electrostatic and vdW interactions between ibuprofen and the head group of lipids. In the second step, ibuprofen is inserted into the lipid bilayer and positioned at the interface between the bilayer and the aqueous phase. In high concentrations of ibuprofen, it moved to the central region of the lipid bilayer. At this concentration, the physical and structural properties of the cell membrane change significantly. Results from the radial distribution function analysis indicate that at low concentrations, ibuprofen molecules are situated close to the head groups of phosphate groups. However, at high concentrations of ibuprofen, these molecules move to the inner side of the lipid bilayer. In addition, our findings indicate that at low concentrations of ibuprofen, these molecules did not significantly alter the physical properties of the cell membrane. In contrast, at high concentrations of ibuprofen, the physical parameters of the hydrocarbon tails, such as thickness, fluidity, and order, changed dramatically. APL parameter for POPC membrane increased slightly to 0.60 and 0.63 nm2 in the presence of low and high concentrations of ibuprofen molecules. The three-step interaction between ibuprofen and the lipid bilayer involves several events, such as the movement of ibuprofen molecules towards the central region of the lipid bilayer and the deformation and alteration of the structural and stability properties of the cell membrane. These effects are observed only at high concentrations of ibuprofen. It appears that the side effects of ibuprofen overdose are related to changes in the properties of the cell membrane and, subsequently, the function of membrane-anchored target proteins.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
3
|
Rojas-Valencia N, Gómez S, Giovannini T, Cappelli C, Restrepo A, Núñez Zarur F. Water Maintains the UV-Vis Spectral Features During the Insertion of Anionic Naproxen and Ibuprofen into Model Cell Membranes. J Phys Chem B 2023; 127:2146-2155. [PMID: 36877579 DOI: 10.1021/acs.jpcb.2c08332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
UV-vis spectra of anionic ibuprofen and naproxen in a model lipid bilayer of the cell membrane are investigated using computational techniques in combination with a comparative analysis of drug spectra in purely aqueous environments. The simulations aim at elucidating the intricacies behind the negligible changes in the maximum absorption wavelength in the experimental spectra. A set of configurations of the systems constituted by lipid, water, and drugs or just water and drugs are obtained from classical Molecular Dynamics simulations. UV-vis spectra are computed in the framework of atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) approaches together with Time-Dependent Density Functional Theory (TD-DFT). Our results suggest that the molecular orbitals involved in the electronic transitions are the same, regardless of the chemical environment. A thorough analysis of the contacts between the drug and water molecules reveals that no significant changes in UV-vis spectra are a consequence of ibuprofen and naproxen molecules being permanently microsolvated by water molecules, despite the presence of lipid molecules. Water molecules microsolvate the charged carboxylate group as expected but also microsolvate the aromatic regions of the drugs.
Collapse
Affiliation(s)
- Natalia Rojas-Valencia
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia, UdeA, Calle 70 No. 52-21 050010, Medellín, Colombia
| | - Francisco Núñez Zarur
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| |
Collapse
|
4
|
Gómez S, Rojas-Valencia N, Toro-Labbé A, Restrepo A. The transition state region in nonsynchronous concerted reactions. J Chem Phys 2023; 158:084109. [PMID: 36859077 DOI: 10.1063/5.0133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The critical and vanishing points of the reaction force F(ξ) = -dV(ξ)/dξ yield five important coordinates (ξR, ξR* , ξTS, ξP* , ξP) along the intrinsic reaction coordinate (IRC) for a given concerted reaction or reaction step. These points partition the IRC into three well-defined regions, reactants (ξR→ξR* ), transition state (ξR* →ξP* ), and products (ξP* →ξP), with traditional roles of mostly structural changes associated with the reactants and products regions and mostly electronic activity associated with the transition state (TS) region. Following the evolution of chemical bonding along the IRC using formal descriptors of synchronicity, reaction electron flux, Wiberg bond orders, and their derivatives (or, more precisely, the intensity of the electron activity) unambiguously indicates that for nonsynchronous reactions, electron activity transcends the TS region and takes place well into the reactants and products regions. Under these circumstances, an extension of the TS region toward the reactants and products regions may occur.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Alejandro Toro-Labbé
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago de Chile 7820436, Chile
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
5
|
Moreno N, Hadad CZ, Restrepo A. Microsolvation of electrons by a handful of ammonia molecules. J Chem Phys 2022; 157:134301. [PMID: 36209021 DOI: 10.1063/5.0107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microsolvation of electrons in ammonia is studied here via anionic NH3 n - clusters with n = 2-6. Intensive samplings of the corresponding configurational spaces using second-order perturbation theory with extended basis sets uncover rich and complex energy landscapes, heavily populated by many local minima in tight energy windows as calculated from highly correlated coupled cluster methods. There is a marked energetical preference for structures that place the excess electron external to the molecular frame, effectively coordinating it with the three protons from a single ammonia molecule. Overall, as the clusters grow in size, the lowest energy dimer serves as the basic motif over which additional ammonia molecules are attached via unusually strong charge-assisted hydrogen bonds. This is a priori quite unexpected because, on electrostatic grounds, the excess electron would be expected to be in contact with as many protons as possible. Accordingly, a full quantum mechanical treatment of the bonding interactions under the tools provided by the quantum theory of atoms in molecules is carried out in order to dissect and understand the nature of intermolecular contacts. Vertical detachment energies reveal bound electrons even for n = 2.
Collapse
Affiliation(s)
- Norberto Moreno
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Cacier Z Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
6
|
Correa E, Montaño D, Restrepo A. Cation ⋯anion bonding interactions in 1–Ethyl–3–Methylimidazolium based ionic liquids. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gomez SA, Rojas-Valencia N, Gomez S, Lans I, Restrepo A. Initial recognition and attachment of the Zika virus to host cells: A molecular dynamics and quantum interaction approach. Chembiochem 2022; 23:e202200351. [PMID: 35951472 DOI: 10.1002/cbic.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Indexed: 11/08/2022]
Abstract
The zika virus (ZIKV), transmitted to humans from the bites of Aedes Aegypti and Aedes Albopictus mosquitoes produces Zika fever and neurodegenerative disorders that despite affecting millions of people, most recently in Africa and the Americas, has been declared a neglected tropical disease by the World Health Organization. In this work, atomistic molecular dynamics simulations followed by rigorous analysis of the intermolecular interactions reveal crucial aspects of the initial virus···cell molecular recognition and attachment, events that trigger the infectious cycle. Previous experimental studies have shown that Dermatan Sulphate (DS) and Chondroitin Sulphate A (CSA), two glycosaminoglycans which are actually epimers to each other and that are structural constituents of receptors expressed in cell membranes, are the preferred anchorage sites, with a marked preference for DS. Our calculations rationalize this preference from a molecular perspective as follows: when free of the virus, DS has one sulfate group that does not participate in intramolecular strong hydrogen bonds, thus, it is readily available to interact with the envelope protein of the virus (Zika-E), then, after formation of the complexes, Zika-E···DS exhibits ten strong salt brides connecting the two fragments against only six salt bridges and two hydrogen bonds in Zika-E···CSA.
Collapse
Affiliation(s)
- Santiago A Gomez
- University of Antioquia: Universidad de Antioquia, Chemistry, COLOMBIA
| | | | - Sara Gomez
- Scuola Normale Superiore Classe di Scienze, Chemistry, COLOMBIA
| | - Isaias Lans
- University of Antioquia: Universidad de Antioquia, Chemistry, COLOMBIA
| | - Albeiro Restrepo
- Universidad de Antioquia, Chemistry, AA 1226, 00000, Medellin, COLOMBIA
| |
Collapse
|
8
|
Gómez SA, Rojas‐Valencia N, Gómez S, Cappelli C, Restrepo A. The Role of Spike Protein Mutations in the Infectious Power of SARS-COV-2 Variants: A Molecular Interaction Perspective. Chembiochem 2022; 23:e202100393. [PMID: 34529328 PMCID: PMC8652971 DOI: 10.1002/cbic.202100393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Specific S477N, N501Y, K417N, K417T, E484K mutations in the receptor binding domain (RBD) of the spike protein in the wild type SARS-COV-2 virus have resulted, among others, in the following variants: B.1.160 (20A or EU2, first reported in continental Europe), B1.1.7 (α or 20I501Y.V1, first reported in the United Kingdom), B.1.351 (β or 20H/501Y.V2, first reported in South Africa), B.1.1.28.1 (γ or P.1 or 20J/501Y.V3, first reported in Brazil), and B.1.1.28.2 (ζ, or P.2 or 20B/S484K, also first reported in Brazil). From the analysis of a set of bonding descriptors firmly rooted in the formalism of quantum mechanics, including Natural Bond Orbitals (NBO), Quantum Theory of Atoms In Molecules (QTAIM) and highly correlated energies within the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)), and from a set of computed electronic spectral patterns with environmental effects, we show that the new variants improve their ability to recognize available sites to either hydrogen bond or to form salt bridges with residues in the ACE2 receptor of the host cells. This results in significantly improved initial virus⋅⋅⋅cell molecular recognition and attachment at the microscopic level, which trigger the infectious cycle.
Collapse
Affiliation(s)
- Santiago A. Gómez
- Instituto de QuímicaUniversidad de Antioquia UdeACalle 70 No. 52–21050010MedellínColombia
| | - Natalia Rojas‐Valencia
- Instituto de QuímicaUniversidad de Antioquia UdeACalle 70 No. 52–21050010MedellínColombia
- Escuela de Ciencias y HumanidadesDepartamento de Ciencias B'ásicasUniversidad Eafit AA3300MedellínColombia
| | - Sara Gómez
- Scuola Normale SuperioreClasse di ScienzePiazza dei Cavalieri 756126PisaItaly
| | - Chiara Cappelli
- Scuola Normale SuperioreClasse di ScienzePiazza dei Cavalieri 756126PisaItaly
| | - Albeiro Restrepo
- Instituto de QuímicaUniversidad de Antioquia UdeACalle 70 No. 52–21050010MedellínColombia
| |
Collapse
|
9
|
Analysis of Conformational Preferences in Caffeine. Molecules 2022; 27:molecules27061937. [PMID: 35335301 PMCID: PMC8949453 DOI: 10.3390/molecules27061937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/10/2022] Open
Abstract
High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.
Collapse
|
10
|
Gómez S, Rojas-Valencia N, Giovannini T, Restrepo A, Cappelli C. Ring Vibrations to Sense Anionic Ibuprofen in Aqueous Solution as Revealed by Resonance Raman. Molecules 2022; 27:molecules27020442. [PMID: 35056755 PMCID: PMC8780161 DOI: 10.3390/molecules27020442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022] Open
Abstract
We unravel the potentialities of resonance Raman spectroscopy to detect ibuprofen in diluted aqueous solutions. In particular, we exploit a fully polarizable quantum mechanics/molecular mechanics (QM/MM) methodology based on fluctuating charges coupled to molecular dynamics (MD) in order to take into account the dynamical aspects of the solvation phenomenon. Our findings, which are discussed in light of a natural bond orbital (NBO) analysis, reveal that a selective enhancement of the Raman signal due to the normal mode associated with the C-C stretching in the ring, νC=C, can be achieved by properly tuning the incident wavelength, thus facilitating the recognition of ibuprofen in water samples.
Collapse
Affiliation(s)
- Sara Gómez
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- Correspondence: (S.G.); (C.C.)
| | - Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin 050010, Colombia; (N.R.-V.); (A.R.)
| | - Tommaso Giovannini
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin 050010, Colombia; (N.R.-V.); (A.R.)
| | - Chiara Cappelli
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- Correspondence: (S.G.); (C.C.)
| |
Collapse
|
11
|
David J, Gómez S, Guerra D, Guerra D, Restrepo A. A Comprehensive Picture of the Structures, Energies, and Bonding in the Alanine Dimers. Chemphyschem 2021; 22:2401-2412. [PMID: 34554628 DOI: 10.1002/cphc.202100585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 12/14/2022]
Abstract
High level quantum mechanical computations and extensive stochastic searches of the potential energy surfaces of the Alanine dimers uncover rich and complex structural and interaction landscapes. A total of 416 strongly bound (up 13.4 kcal mol-1 binding energies at the DLPNO-CCSD(T)/6-311++G(d,p) level corrected by the basis set superposition error and by the zero point vibrational energies over B3LYP-D3 geometries), close energy equilibrium structures were located, bonded via 32 specific types of intermolecular contacts including Y⋅⋅⋅H-X primary and Y⋅⋅⋅H-C secondary hydrogen bonds, H⋅⋅⋅H dihydrogen contacts, and non conventional anti-electrostatic Y δ - ⋯ X δ - interactions. The putative global minimum is triply degenerate, corresponding to the structure of the common dimer of a carboxylic acid. All quantum descriptors of chemical bonding point to a multitude of weak individual interactions within each dimer, whose cumulative effect results in large binding energies and in an attractive fluxional wall of non-covalent interactions in the interstitial region between the monomers.
Collapse
Affiliation(s)
- Jorge David
- Escuela de Ciencias, Departamento de Ciencias Físicas, Universidad Eafit, AA 3300, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Doris Guerra
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Dario Guerra
- Departamento de Educación y Ciencias Básicas, Instituto Tecnológico Metropolitano, Calle 73 No. 76 A-354, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
12
|
Florez E, Acelas N, Gomez S, Hadad C, Restrepo A. To be or not to be? that is the entropic, enthalpic, and molecular interaction dilemma in the formation of (water)20 clusters and methane clathrate. Chemphyschem 2021; 23:e202100716. [PMID: 34761856 DOI: 10.1002/cphc.202100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Indexed: 11/09/2022]
Abstract
A detailed analysis under a comprehensive set of theoretical and computational tools of the thermodynamical factors and of the intermolecular interactions behind the stabilization of a well known set of (water)20 cavities and of the methane clathrate is offered in this work. Beyond the available reports of experimental characterization at extreme conditions of most of the systems studied here, all clusters should be amenable to experimental detection at 1 atm and moderate temperatures since 280 K marks the boundary at which, ignoring reaction paths, formation of all clusters is no longer spontaneous from the 20H2O → (H2O)20 and CH4 + 20H2O → CH4@512 processes. As a function of temperature, a complex interplay leading to the free energy of formation occurs between the destabilizing entropic contributions, mostly due to cluster vibrations, and the stabilizing enthalpic contributions, due to intermolecular interactions and the PV term, is best illustrated by the highly symmetric 512 cage consistently showing signs of stronger intermolecular bonding despite having smaller binding energy than the other clusters. A fluxional wall of attractive non-covalent interactions, arising because of the cumulative effect of a large number of tiny individual charge transfers to the interstitial region, plays a pivotal role stabilizing the CH4@512 clathrate.
Collapse
Affiliation(s)
- Elizabeth Florez
- Universidad de Medellín: Universidad de Medellin, Ciencias basicas, COLOMBIA
| | - Nancy Acelas
- Universidad de Medellín: Universidad de Medellin, Ciencias Basicas, COLOMBIA
| | - Sara Gomez
- Scuola Normale Superiore Classe di Scienze, Chemistry, ITALY
| | - Cacier Hadad
- Universidad de Antioquía: Universidad de Antioquia, Chemistry, COLOMBIA
| | - Albeiro Restrepo
- Universidad de Antioquia, Chemistry, AA 1226, 00000, Medellin, COLOMBIA
| |
Collapse
|