1
|
Yang B, Yang H, Liang J, Chen J, Wang C, Wang Y, Wang J, Luo W, Deng T, Guo J. A review on the screening methods for the discovery of natural antimicrobial peptides. J Pharm Anal 2025; 15:101046. [PMID: 39885972 PMCID: PMC11780100 DOI: 10.1016/j.jpha.2024.101046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 02/01/2025] Open
Abstract
Natural antimicrobial peptides (AMPs) are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens. They have found extensive applications in the fields of medicine, food, and agriculture. However, efficiently screening AMPs from natural sources poses several challenges, including low efficiency and high antibiotic resistance. This review focuses on the action mechanisms of AMPs, both through membrane and non-membrane routes. We thoroughly examine various highly efficient AMP screening methods, including whole-bacterial adsorption binding, cell membrane chromatography (CMC), phospholipid membrane chromatography binding, membrane-mediated capillary electrophoresis (CE), colorimetric assays, thin layer chromatography (TLC), fluorescence-based screening, genetic sequencing-based analysis, computational mining of AMP databases, and virtual screening methods. Additionally, we discuss potential developmental applications for enhancing the efficiency of AMP discovery. This review provides a comprehensive framework for identifying AMPs within complex natural product systems.
Collapse
Affiliation(s)
- Bin Yang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Yuanyuan Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jincai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong, 528244, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Das B, Uchikura Y, Matsuhisa N, Oaki Y, Pennington M, Sugihara K. Mechanochromic Chameleon Packaging Based on Polydiacetylene. ACS Sens 2024; 9:6844-6851. [PMID: 39656152 DOI: 10.1021/acssensors.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We demonstrated a mechanochromic chameleon packaging that quantitatively visualizes damage based on the polydiacetylene blue-to-red color transition. The applied pressures on the damage can be conveniently read by taking a photograph via a homemade mobile app called the "Pressure Analysis App". The key aspects of the development were 1) the adjustment of the sensitivity by adding guest molecules into the PDA matrix, 2) quantitative calibration, and 3) the accurate reading of the pressure from RGB images based on the calibration. The force sensitivity of polydiacetylene on cellulose was characterized in the range of 30-100 nN (2.59-8.86 MPa) at the nanoscale by dual friction force/fluorescence microscopy, and in the range of 0.7-2.2 N (0.11-0.35 MPa) at the macroscopic scale by a friction tester. The scanning speed was found to be one of the key parameters, where the force sensitivity above 50 mm/s was 6.45 times larger than that below 10 mm/s. The developed mechanochromic packaging system can be used for transporting electronics and medical tools, such as vaccine vials, food, etc., more safely and reliably in the future.
Collapse
Affiliation(s)
- Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - Yu Uchikura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Miles Pennington
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Zheng J, Galluzzi M, Sugihara K. Mechanical Properties of Polydiacetylene Multilayers Studied by AFM Force Spectroscopy. J Phys Chem B 2024; 128:5419-5426. [PMID: 38801761 DOI: 10.1021/acs.jpcb.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blue-to-red chromatic phase transition of polydiacetylene (PDA) is accompanied by the twist and rearrangement of its side chains, which results in shortening of the conjugation length in the backbone. However, how these morphological changes affect its mechanical properties remains elusive. In this work, force spectroscopy mapping by atomic force microscopy was employed to quantify mechanical parameters of PDA thin films such as breakthrough force and Young's modulus at the monomer, blue, and red phases during the chromatic transition. We found that the breakthrough force increased by 113% and Young's modulus decreased by 21% during the blue-to-red transition, highlighting that the subtle change in the side-chain configuration has a dramatic impact on its mechanical properties.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Zheng J, Das B, Sugihara K. Dual Friction Force/Fluorescence Microscopy. Anal Chem 2024; 96:949-956. [PMID: 38180748 DOI: 10.1021/acs.analchem.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Friction force microscopy (FFM) is a mode of atomic force microscopy (AFM) that quantifies both normal and horizontal forces against substrates. Recent improvement in its accuracy at nanonewton ranges and the possibility of combining AFM with fluorescence microscopy enabled the simultaneous characterization by FFM and fluorescence microscopy. This Tutorial describes the operation principle of the dual friction force/fluorescence microscopy setup and highlights its emerging applications in mechanochromic materials.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| | - Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Zheng J, Jo S, Chen J, Das B, Juhasz L, Cabral H, Sugihara K. Dual Nanofriction Force Microscopy/Fluorescence Microscopy Imaging Reveals the Enhanced Force Sensitivity of Polydiacetylene by pH and NaCl. Anal Chem 2023. [PMID: 37465896 DOI: 10.1021/acs.analchem.3c01433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Polydiacetylene (PDA) is a popular mechanochromic material often used in biosensing. The effect of its headgroup-headgroup interactions on thermochromism such as pH or salt concentration dependency has been extensively studied before; however, their effect on mechanochromism at the nanoscale is left unstudied. In this work, nanofriction force microscopy and fluorescence microscopy were combined to study the effect of pH and ionic strength on the polydiacetylene (PDA) force sensitivity at the nanoscale. We found that the increase in pH from 5.7 to 8.2 caused an 8-fold enhancement in force sensitivity. The elevation of NaCl concentration from 10 to 200 mM also made the PDA 5 times more force-sensitive. These results suggest that the PDA force sensitivity at the nanoscale can be conveniently enhanced by "pre-stimulation" with pH or ionic strength.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Seiko Jo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Jiali Chen
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Levente Juhasz
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Chen J, Zheng J, Hou Y, Sugihara K. Colorimetric response in polydiacetylene at the single domain level using hyperspectral microscopy. Chem Commun (Camb) 2023; 59:3743-3746. [PMID: 36897611 DOI: 10.1039/d2cc06803f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The structural variance of polydiacetylene (PDA) at the nanoscale level, even under the same fabrication conditions, is one of the origins of its poor reproducibility in chemo/biosensing. In this work, we present a spatial map of such structural distributions within a single crystal by taking advantage of the recent development of hyperspectral microscopy at visible wavelengths. Hyperspectral microscopy provides the distribution of absorption spectra at the spatial resolution of standard optical microscopy. By tracking the blue-to-red transition via this technique, we found that heat or pH stimulation leaves a unique pattern in the transition pathways.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Yuge Hou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| |
Collapse
|
7
|
Shen X, Zhang Y, Mao Q, Huang Z, Yan T, Lin T, Chen W, Wang Y, Cai X, Liang Y. Peptide–Polymer Conjugates: A Promising Therapeutic Solution for Drug-Resistant Bacteria. INT J POLYM SCI 2022; 2022:1-18. [DOI: 10.1155/2022/7610951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
By 2050, it is estimated that 10 million people will die of drug-resistant bacterial infection caused by antibiotic abuse. Antimicrobial peptide (AMP) is widely used to prevent such circumstances, for the positively charged AMPs can kill drug-resistant bacteria by destroying negatively charged bacterial cell membrane, and has excellent antibacterial efficiency and low drug resistance. However, due to the defects in low in vivo stability, easy degradation, and certain cytotoxicity, its practical clinical application is limited. The emergence of peptide–polymer conjugates (PPC) helps AMPs overcome these shortcomings. By combining with functional polymers, the positive charge of AMPs is partially shielded, and its stability and water solubility are improved, so as to prolong the in vivo circulation time of AMPs and reduce its cytotoxicity. At the same time, the self-assembly ability of PPC enables it to assemble into different nanostructures to undertake specific antibacterial tasks. At present, PPC is mainly used in wound dressing, bone tissue repair, antibacterial coating of medical devices, nerve repair, tumor treatment, and oral health maintenance. In this study, we summarize the structure, synthesis methods, and the clinical applications of PPC, so as to present the current challenges and discuss the future prospects of antibacterial therapeutic materials.
Collapse
Affiliation(s)
- Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenchao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|