1
|
Moller AL, Middleton IA, Maynard GE, Cox LB, Wang A, Li HL, Thordarson P. Discrimination between Purine and Pyrimidine-Rich RNA in Liquid-Liquid Phase-Separated Condensates with Cationic Peptides and the Effect of Artificial Crowding Agents. Biomacromolecules 2024. [PMID: 39661936 DOI: 10.1021/acs.biomac.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked in vitro to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG). Herein, we have shown that the nucleotide base sequence of RNA can greatly influence its propensity to undergo phase separation with cationic peptides, with the purine-only RNA decamer (AG)5 readily doing so while the pyrimidine-only (CU)5 does not. Furthermore, we show that the presence and size of a PEG macromolecular crowder affects both the ability to phase separate and the stability of coacervates formed, possibly due to co-condensation of PEG with the RNA and peptides. This work sheds light on the presence of low-complexity long purine- or pyrimidine-rich noncomplementary repeat (AG or CU) sequences in various noncoding RNAs found in biology.
Collapse
Affiliation(s)
- Anika L Moller
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Isis A Middleton
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grace E Maynard
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lachlan B Cox
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hsiu L Li
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry and the UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
3
|
Khan T, Halder B, Das N, Sen P. Role of Associated Water Dynamics on Protein Stability and Activity in Crowded Milieu. J Phys Chem B 2024; 128:8672-8686. [PMID: 39224956 DOI: 10.1021/acs.jpcb.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macromolecular crowding bridges in vivo and in vitro studies by simulating cellular complexities such as high viscosity and limited space while maintaining the experimental feasibility. Over the last two decades, the impact of macromolecular crowding on protein stability and activity has been a significant topic of study and discussion, though still lacking a thorough mechanistic understanding. This article investigates the role of associated water dynamics on protein stability and activity within crowded environments, using bromelain and Ficoll-70 as the model systems. Traditional crowding theory primarily attributes protein stability to entropic effects (excluded volume) and enthalpic interactions. However, our recent findings suggest that water structure modulation plays a crucial role in a crowded environment. In this report, we strengthen the conclusion of our previous study, i.e., rigid-associated water stabilizes proteins via entropy and destabilizes them via enthalpy, while flexible water has the opposite effect. In the process, we addressed previous shortcomings with a systematic concentration-dependent study using a single-domain protein and component analysis of solvation dynamics. More importantly, we analyze bromelain's hydrolytic activity using the Michaelis-Menten model to understand kinetic parameters like maximum velocity (Vmax) achieved by the system and the Michaelis-Menten coefficient (KM). Results indicate that microviscosity (not the bulk viscosity) controls the enzyme-substrate (ES) complex formation, where an increase in the microviscosity makes the ES complex formation less favorable. On the other hand, flexible associated water dynamics were found to favor the rate of product formation significantly from the ES complex, while rigid associated water hinders it. This study improves our understanding of protein stability and activity in crowded environments, highlighting the critical role of associated water dynamics.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
4
|
Lv H, Duan X, Han Z, Yu H, Liu B. Quencher-free fluorescent assays by controlled DNA partitioning in the aqueous two-phase system with crowding-enhanced kinetics. Biosens Bioelectron 2024; 246:115864. [PMID: 38039730 DOI: 10.1016/j.bios.2023.115864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Fluorescent DNA assays are promising in disease diagnosis, environmental monitoring, and drug screening, encompassing both heterogeneous and homogeneous assay types. Nevertheless, heterogeneous assays suffer from tedious washing steps and slow reaction kinetics, whereas homogenous assays require well-designed fluorophore pairs to modulate signal off/on. Herein, we developed a cost-effective and efficient quencher-free fluorescent DNA assay using an aqueous two-phase system (ATPS). Using a strand-displacement reaction, we showed that similar sensing performance could be achieved at a much lower cost. Furthermore, the unique crowding environment in ATPS accelerated strand-displacement reactions by up to six-fold and reduced DNA amplification time from 120 min to 30 min. Our assay demonstrated robust sensing in serum environments and successful detection of miRNA extracted from cells. This innovative assay format has the potential for biosensor development with both heterogeneous readout and rapid reaction kinetics in various applications.
Collapse
Affiliation(s)
- Haoyue Lv
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Xiaoman Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Zhaoyu Han
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Haozhen Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
5
|
Majumdar S, Rastogi H, Chowdhury PK. Bridging Soft Interaction and Excluded Volume in Crowded Milieu through Subtle Protein Dynamics. J Phys Chem B 2024; 128:716-730. [PMID: 38226816 DOI: 10.1021/acs.jpcb.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The impact of macromolecular crowding on biological macromolecules has been elucidated through the excluded volume phenomenon and soft interactions. However, it has often been difficult to provide a clear demarcation between the two regions. Here, using temperature-dependent dynamics (local and global) of the multidomain protein human serum albumin (HSA) in the presence of commonly used synthetic crowders (Dextran 40, PEG 8, Ficoll 70, and Dextran 70), we have shown the presence of a transition that serves as a bridge between the soft and hard regimes. The bridging region is independent of the crowder identity and displays no apparent correlation with the critical overlap concentration of the polymeric crowding agents. Moreover, the dynamics of domains I and II and the protein gating motion respond differently, thereby bringing to the fore the asymmetry underlying the crowder influence on HSA. In addition, solvent-coupled and decoupled protein motions indicate the heterogeneity of the dynamic landscape in the crowded milieu. We also propose an intriguing correlation between protein stability and dynamics, with increased global stability being accompanied by eased local domain motion.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Aznauryan M, Birkedal V. Dynamics of G-Quadruplex Formation under Molecular Crowding. J Phys Chem Lett 2023; 14:10354-10360. [PMID: 37948600 DOI: 10.1021/acs.jpclett.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
G-quadruplex (G4) structures assemble from guanine-rich DNA sequences and are believed to regulate several key cellular processes. G4 formation and conformational interconversions are well-established to occur dynamically in vitro. However, a clear understanding of G4 formation dynamics in cells as well as under conditions mimicking the cellular environment is missing. To fill this gap, we have investigated the G4 dynamics in molecularly crowded solutions, thus replicating the effect of the excluded volume present in cells. The results show that the volume exclusion exerted by large crowding agents accelerates the rate of G4 formation by at least an order of magnitude, leading to significant G4 stabilization. Extrapolation from our experimental data predicts crowding-induced G4 stabilization by more than 3 kcal/mol, under crowding levels found in the cellular environment. Such effects are likely to be important for G4-driven regulatory functions.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Univ. Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | - Victoria Birkedal
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Dandekar BR, Majumdar BB, Mondal J. Nonmonotonic Modulation of the Protein-Ligand Recognition Event by Inert Crowders. J Phys Chem B 2023; 127:7449-7461. [PMID: 37590118 DOI: 10.1021/acs.jpcb.3c03946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The ubiquitous event of a protein recognizing small molecules or ligands at its native binding site is crucial for initiating major biological processes. However, how a crowded environment, as is typically represented by a cellular interior, would modulate the protein-ligand search process is largely debated. Excluded volume-based theory suggests that the presence of an inert crowder would reinforce a steady stabilization and enhancement of the protein-ligand recognition process. Here, we counter this long-held perspective via the molecular dynamics simulation and Markov state model of the protein-ligand recognition event in the presence of inert crowders. Specifically, we demonstrate that, depending on concentration, even purely inert crowders can exert a nonmonotonic effect via either stabilizing or destabilizing the protein-ligand binding event. Analysis of the kinetic network of binding pathways reveals that the crowders would either modulate precedent non-native on-pathway intermediates or would devise additional ones in a multistate recognition event across a wide range of concentrations. As an important insight, crowders gradually shift the relative transitional preference of these intermediates toward a native-bound state, with ligand residence time at the binding pocket dictating the trend of nonmonotonic concentration dependence by simple inert crowders.
Collapse
|
8
|
Liang T, Yang C, Song X, Feng Y, Liu Y, Chen H. Quantification of macromolecule crowding at single-molecule level. Phys Rev E 2023; 108:014406. [PMID: 37583195 DOI: 10.1103/physreve.108.014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
Macromolecule crowding has a prominent impact on a series of biochemical processes in the cell. It is also expected to promote macromolecular complexation induced by excluded volume effects, which conflicts with recent advances in the thermodynamic interaction between inert, synthetic polymers, and nucleic acids. Along this line, a method combining high-resolution magnetic tweezers and extended crowder-oxDNA model was applied to resolve these discrepancies by systematically studying the kinetics and thermodynamics of the folding-unfolding transition for an individual DNA hairpin in a crowded environment. More specifically, from the magnetic tweezers-based experiments, the linear dependence of the critical force of the DNA hairpin on the polyethylene glycol (PEG) concentration was demonstrated, which is consistent with the results based on the crowder-oxDNA model in which the Lennard-Jones potential was adopted to express the interaction between the crowders and the DNA hairpin. These consistencies highlight that the excluded volume effects are mainly responsible for the interaction between PEG and the DNA hairpin, which is different from the interaction between dextran and the DNA hairpin. In the meantime, the dependence of the folding rate on the molecule weight of PEG, which was different from fluorescence resonance energy transfer-based results, was identified. The proposed method opens a path to detect the interaction between an inert, synthetic molecule, and the DNA hairpin, which is important to accurately mimic the cytosolic environments using mixtures of different inert molecules.
Collapse
Affiliation(s)
- Ting Liang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Chao Yang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Xiaoya Song
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yuyu Feng
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
9
|
Menon S, Mondal J. Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It. J Phys Chem B 2023; 127:4032-4049. [PMID: 37114769 DOI: 10.1021/acs.jpcb.3c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A 140-residue intrinsically disordered protein (IDP), α-synuclein (αS), is known to adopt conformations that are vastly plastic and susceptible to environmental cues and crowders. However, the inherently heterogeneous nature of αS has precluded a clear demarcation of its monomeric precursor between aggregation-prone and functionally relevant aggregation-resistant states and how a crowded environment could modulate their mutual dynamic equilibrium. Here, we identify an optimal set of distinct metastable states of αS in aqueous media by dissecting a 73 μs-long molecular dynamics ensemble via building a comprehensive Markov state model (MSM). Notably, the most populated metastable state corroborates with the dimension obtained from PRE-NMR studies of αS monomer, and it undergoes kinetic transition at diverse time scales with a weakly populated random-coil-like ensemble and a globular protein-like state. However, subjecting αS to a crowded environment results in a nonmonotonic compaction of these metastable conformations, thereby skewing the ensemble by either introducing new tertiary contacts or by reinforcing the innate contacts. The early stage of dimerization process is found to be considerably expedited in the presence of crowders, albeit promoting nonspecific interactions. Together with this, using an extensively sampled ensemble of αS, this exposition demonstrates that crowded environments can potentially modulate the conformational preferences of IDP that can either promote or inhibit aggregation events.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
10
|
Yang C, Song X, Feng Y, Zhao G, Liu Y. Stability of DNA and RNA hairpins: a comparative study based on ox-DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:265101. [PMID: 36972608 DOI: 10.1088/1361-648x/acc7eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Advances in single-molecule experiments on macromolecular crowding urgently need an efficient simulation method to resolve their discrepancies quantitatively. Ox-DNA model has been since reworked to treat the thermodynamics and mechanical properties of DNA/RNA hairpin at a stretching force. In hopping experiments, the critical forces of RNA hairpins at different temperatures are greater than those of DNA hairpins, in addition, the Gibbs free energy at a fixed temperature required to convert an RNA hairpin into a single-stranded molecule at zero force is obviously greater than that of DNA hairpin and gradually decreases by increasing the temperature. As far as force-ramping experiments are concerned, the first-rupture forces of RNA/DNA hairpins corresponding to the maximum probability density linearly pertain to the force-loading rate, with those of RNA hairpins being greater. The extended ox-DNA model could potentially identify the interaction between biologically inert polymer and RNA/DNA hairpins in crowded environments.
Collapse
Affiliation(s)
- Chao Yang
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaoya Song
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yuyu Feng
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Guangju Zhao
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, Guizhou 550025, People's Republic of China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, People's Republic of China
- Kechuang Industrial Development Company Limited,Gui'an New Area, Guiyang 550025, People's Republic of China
| |
Collapse
|
11
|
Lee KY, Lee BJ. Dynamics-Based Regulatory Switches of Type II Antitoxins: Insights into New Antimicrobial Discovery. Antibiotics (Basel) 2023; 12:antibiotics12040637. [PMID: 37106997 PMCID: PMC10135005 DOI: 10.3390/antibiotics12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Type II toxin-antitoxin (TA) modules are prevalent in prokaryotes and are involved in cell maintenance and survival under harsh environmental conditions, including nutrient deficiency, antibiotic treatment, and human immune responses. Typically, the type II TA system consists of two protein components: a toxin that inhibits an essential cellular process and an antitoxin that neutralizes its toxicity. Antitoxins of type II TA modules typically contain the structured DNA-binding domain responsible for TA transcription repression and an intrinsically disordered region (IDR) at the C-terminus that directly binds to and neutralizes the toxin. Recently accumulated data have suggested that the antitoxin's IDRs exhibit variable degrees of preexisting helical conformations that stabilize upon binding to the corresponding toxin or operator DNA and function as a central hub in regulatory protein interaction networks of the type II TA system. However, the biological and pathogenic functions of the antitoxin's IDRs have not been well discussed compared with those of IDRs from the eukaryotic proteome. Here, we focus on the current state of knowledge about the versatile roles of IDRs of type II antitoxins in TA regulation and provide insights into the discovery of new antibiotic candidates that induce toxin activation/reactivation and cell death by modulating the regulatory dynamics or allostery of the antitoxin.
Collapse
Affiliation(s)
- Ki-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Stewart CJ, Olgenblum GI, Propst A, Harries D, Pielak GJ. Resolving the enthalpy of protein stabilization by macromolecular crowding. Protein Sci 2023; 32:e4573. [PMID: 36691735 PMCID: PMC9942490 DOI: 10.1002/pro.4573] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Proteins in the cellular milieu reside in environments crowded by macromolecules and other solutes. Although crowding can significantly impact the protein folded state stability, most experiments are conducted in dilute buffered solutions. To resolve the effect of crowding on protein stability, we use 19 F nuclear magnetic resonance spectroscopy to follow the reversible, two-state unfolding thermodynamics of the N-terminal Src homology 3 domain of the Drosophila signal transduction protein drk in the presence of polyethylene glycols (PEGs) of various molecular weights and concentrations. Contrary to most current theories of crowding that emphasize steric protein-crowder interactions as the main driving force for entropically favored stabilization, our experiments show that PEG stabilization is accompanied by significant heat release, and entropy disfavors folding. Using our newly developed model, we find that stabilization by ethylene glycol and small PEGs is driven by favorable binding to the folded state. In contrast, for larger PEGs, chemical or soft PEG-protein interactions do not play a significant role. Instead, folding is favored by excluded volume PEG-protein interactions and an exothermic nonideal mixing contribution from release of confined PEG and water upon folding. Our results indicate that crowding acts through molecular interactions subtler than previously assumed and that interactions between solution components with both the folded and unfolded states must be carefully considered.
Collapse
Affiliation(s)
- Claire J. Stewart
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gil I. Olgenblum
- Institute of Chemistry & the Fritz Haber Research Center, The Hebrew UniversityJerusalemIsrael
| | - Ashlee Propst
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Daniel Harries
- Institute of Chemistry & the Fritz Haber Research Center, The Hebrew UniversityJerusalemIsrael
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Tsao L, Shepardson-Fungairiño S, Murayama H, Cecere A, Wren E, Núñez M. Assessing the Potential for DNA Quadruplex Formation in the Predatory Bacterium Bdellovibrio bacteriovorus. Biochemistry 2022; 61:2073-2087. [PMID: 36193632 PMCID: PMC9536305 DOI: 10.1021/acs.biochem.2c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 11/29/2022]
Abstract
During its life cycle, the predatory bacterium Bdellovibrio bacteriovorus switches between an attack and a growth phase, each of which is characterized by a distinct pattern of gene expression. Twenty-one potential G-quadruplex-forming sequences (PQFS) have been identified in the Bdellovibrio genome. These G-rich sequences are prevalent within open reading frames and nearly evenly distributed between the template and the coding strand, suggesting that they could play a role in gene expression and life cycle switching. Published transcriptomic data show that the genes nearest these sequences are not (de)activated together during the same phases of the life cycle. We explored the biophysical properties of three identified PQFS using circular dichroism (CD) spectroscopy and gel electrophoresis and demonstrated that all three sequences fold into stable unimolecular quadruplexes with distinct topologies. In the presence of their complementary strands, each forms an equilibrium mixture of duplex and quadruplex in which quadruplex formation is favored at higher temperatures. Once the quadruplexes are folded, they are slow to form a duplex when the complementary strand is added, with one sequence requiring the equivalent of many Bdellovibrio lifetimes to do so. Using a variety of cosolutes, we showed that molecular crowding mimicking cellular conditions stabilizes the quadruplex structures and induces structural transitions to the parallel topology regardless of the original topology. Taken together, these experiments suggest that Bdellovibrio PQFS are capable of forming quadruplexes in vivo and thereby playing a role in gene expression.
Collapse
Affiliation(s)
- Lucille
H. Tsao
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Sally Shepardson-Fungairiño
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Hikari Murayama
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Amelia Cecere
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Elizabeth Wren
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Megan Núñez
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| |
Collapse
|
14
|
Sung HL, Nesbitt DJ. Synergism in the Molecular Crowding of Ligand-Induced Riboswitch Folding: Kinetic/Thermodynamic Insights from Single-Molecule Spectroscopy. J Phys Chem B 2022; 126:6419-6427. [PMID: 35981263 DOI: 10.1021/acs.jpcb.2c03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformational dynamics in riboswitches involves ligand binding and folding of RNA, each of which can be influenced by excluded volume effects under "crowded" in vivo cellular conditions and thus incompletely characterized by in vitro studies under dilute buffer conditions. In this work, temperature-dependent single-molecule fluorescence resonance energy transfer (FRET) spectroscopy is used to characterize the thermodynamics of (i) cognate ligand and (ii) molecular crowders (PEG, polyethylene glycol) on folding of the B. subtilis LysC lysine riboswitch. With the help of detailed kinetic analysis, we isolate and study the effects of PEG on lysine binding and riboswitch folding steps individually, from which we find that PEG crowding facilitates riboswitch folding primarily via a surprising increase in affinity for the cognate ligand. This is furthermore confirmed by temperature-dependent studies, which reveal that PEG crowding is not purely entropic and instead significantly impacts both enthalpic and entropic contributions to the free energy landscape for folding. The results indicate that PEG molecular crowding/stabilization of the lysine riboswitch is more mechanistically complex and requires extension beyond the conventional picture of purely repulsive solvent-solute steric interactions arising from excluded volume and entropy. Instead, the current experimental FRET data support an alternative multistep mechanism, whereby PEG first entropically crowds the unfolded riboswitch into a "pre-folded" conformation, which in turn greatly increases the ligand binding affinity and thereby enhances the overall equilibrium for riboswitch folding.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Miyagawa A, Komatsu H, Nagatomo S, Nakatani K. Acid Dissociation Behavior of 8-Hydroxyquinoline-5-Sulfonic Acid in Molecular Crowding Environment Modeled Using Polyethylene Glycol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|