1
|
Darvishi A, Ansari M. Thermoresponsive and Supramolecular Polymers: Interesting Biomaterials for Drug Delivery. Biotechnol J 2024; 19:e202400379. [PMID: 39380492 DOI: 10.1002/biot.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
How to use and deliver drugs to diseased and damaged areas has been one of the main concerns of pharmacologists and doctors for a long time. With the efforts of researchers, the advancement of technology, and the involvement of engineering in the health field, diverse and promising approaches have been studied and used to achieve this goal. A better understanding of biomaterials and the ability of production equipment led researchers to offer new drug delivery systems to the world. In recent decades, responsive polymers (exclusively to temperature and pH) and supramolecular polymers have received much attention due to their unique capabilities. Although this field of research still needs to be scrutinized and studied more, their recognition, examination, and use as drug delivery systems is a start for a promising future. This review study, focusing on temperature-responsive and supramolecular biomaterials and their application as drug delivery systems, deals with their structure, properties, and role in the noninvasive and effective delivery of medicinal agents.
Collapse
Affiliation(s)
- Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
2
|
Piskorz T, Perez-Chirinos L, Qiao B, Sasselli IR. Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies. ACS OMEGA 2024; 9:31254-31273. [PMID: 39072142 PMCID: PMC11270692 DOI: 10.1021/acsomega.4c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Supramolecular peptide assemblies (SPAs) hold promise as materials for nanotechnology and biomedicine. Although their investigation often entails adapting experimental techniques from their protein counterparts, SPAs are fundamentally distinct from proteins, posing unique challenges for their study. Computational methods have emerged as indispensable tools for gaining deeper insights into SPA structures at the molecular level, surpassing the limitations of experimental techniques, and as screening tools to reduce the experimental search space. However, computational studies have grappled with issues stemming from the absence of standardized procedures and relevant crystal structures. Fundamental disparities between SPAs and protein simulations, such as the absence of experimentally validated initial structures and the importance of the simulation size, number of molecules, and concentration, have compounded these challenges. Understanding the roles of various parameters and the capabilities of different models and simulation setups remains an ongoing endeavor. In this review, we aim to provide readers with guidance on the parameters to consider when conducting SPA simulations, elucidating their potential impact on outcomes and validity.
Collapse
Affiliation(s)
| | - Laura Perez-Chirinos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Baofu Qiao
- Department
of Natural Sciences, Baruch College, City
University of New York, New York, New York 10010, United States
| | - Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
3
|
Iscen A, Kaygisiz K, Synatschke CV, Weil T, Kremer K. Multiscale Simulations of Self-Assembling Peptides: Surface and Core Hydrophobicity Determine Fibril Stability and Amyloid Aggregation. Biomacromolecules 2024; 25:3063-3075. [PMID: 38652055 PMCID: PMC11094720 DOI: 10.1021/acs.biomac.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable β-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive β-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysenur Iscen
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kübra Kaygisiz
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher V. Synatschke
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Gao P, Ha-Duong T, Nicolas J. Coarse-Grained Model-Assisted Design of Polymer Prodrug Nanoparticles with Enhanced Cytotoxicity: A Combined Theoretical and Experimental Study. Angew Chem Int Ed Engl 2024; 63:e202316056. [PMID: 38345287 DOI: 10.1002/anie.202316056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/12/2024]
Abstract
To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
5
|
Sasselli IR, Coluzza I. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. J Chem Theory Comput 2024; 20:224-238. [PMID: 38113378 PMCID: PMC10782451 DOI: 10.1021/acs.jctc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The coarse-grained MARTINI force field, initially developed for membranes, has proven to be an exceptional tool for investigating supramolecular peptide assemblies. Over the years, the force field underwent refinements to enhance accuracy, enabling, for example, the reproduction of protein-ligand interactions and constant pH behavior. However, these protein-focused improvements seem to have compromised its ability to model short peptide self-assembly. In this study, we assess the performance of MARTINI 3 in reproducing peptide self-assembly using the well-established diphenylalanine (FF) as our test case. Unlike its success in version 2.1, FF does not even exhibit aggregation in version 3. By systematically exploring parameters for the aromatic side chains and charged backbone beads, we established a parameter set that effectively reproduces tube formation. Remarkably, these parameter adjustments also replicate the self-assembly of other di- and tripeptides and coassemblies. Furthermore, our analysis uncovers pivotal insights for enhancing the performance of MARTINI in modeling short peptide self-assembly. Specifically, we identify issues stemming from overestimated hydrophilicity arising from charged termini and disruptions in π-stacking interactions due to insufficient planarity in aromatic groups and a discrepancy in intermolecular distances between this and backbone-backbone interactions. This investigation demonstrates that strategic modifications can harness the advancements offered by MARTINI 3 for the realm of short peptide self-assembly.
Collapse
Affiliation(s)
- Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Ivan Coluzza
- Ikerbasque,
Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
6
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Kolberg-Edelbrock J, Cotey TJ, Ma SY, Kapsalis LM, Bondoc DM, Lee SR, Sai H, Smith CS, Chen F, Kolberg-Edelbrock AN, Strong ME, Stupp SI. Biomimetic Extracellular Scaffolds by Microfluidic Superstructuring of Nanofibers. ACS Biomater Sci Eng 2023; 9:1251-1260. [PMID: 36808976 DOI: 10.1021/acsbiomaterials.2c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The extracellular matrix is a dynamic framework bearing chemical and morphological cues that support many cellular functions, and artificial analogs with well-defined chemistry are of great interest for biomedical applications. Herein, we describe hierarchical, extracellular-matrix-mimetic microgels, termed "superbundles" (SBs) composed of peptide amphiphile (PA) supramolecular nanofiber networks created using flow-focusing microfluidic devices. We explore the effects of altered flow rate ratio and PA concentration on the ability to create SBs and develop design rules for producing SBs with both cationic and anionic PA nanofibers and gelators. We demonstrate the morphological similarities of SBs to decellularized extracellular matrices and showcase their ability to encapsulate and retain proteinaceous cargos with a wide variety of isoelectric points. Finally, we demonstrate that the novel SB morphology does not affect the well-established biocompatibility of PA gels.
Collapse
Affiliation(s)
- Jack Kolberg-Edelbrock
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Morton 1-670, Chicago, Illinois 60611-3008, United States
| | - Thomas J Cotey
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Steven Y Ma
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Litsa M Kapsalis
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Delaney M Bondoc
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Cara S Smith
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Feng Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Alexandra N Kolberg-Edelbrock
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Madison E Strong
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Arkes Suite 2330, Chicago, Illinois 60611-2915, United States
| |
Collapse
|
8
|
Computational approaches for understanding and predicting the self-assembled peptide hydrogels. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Yuan SC, Lewis JA, Sai H, Weigand SJ, Palmer LC, Stupp SI. Peptide Sequence Determines Structural Sensitivity to Supramolecular Polymerization Pathways and Bioactivity. J Am Chem Soc 2022; 144:16512-16523. [PMID: 36049084 DOI: 10.1021/jacs.2c05759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced β-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate β-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.
Collapse
Affiliation(s)
- Shelby C Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob A Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
|