1
|
Taylor BR, Kumar N, Mishra DK, Simmons BA, Choudhary H, Sale KL. Computational Advances in Ionic Liquid Applications for Green Chemistry: A Critical Review of Lignin Processing and Machine Learning Approaches. Molecules 2024; 29:5073. [PMID: 39519714 PMCID: PMC11547372 DOI: 10.3390/molecules29215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The valorization and dissolution of lignin using ionic liquids (ILs) is critical for developing sustainable biorefineries and a circular bioeconomy. This review aims to critically assess the current state of computational and machine learning methods for understanding and optimizing IL-based lignin dissolution and valorization processes reported since 2022. The paper examines various computational approaches, from quantum chemistry to machine learning, highlighting their strengths, limitations, and recent advances in predicting and optimizing lignin-IL interactions. Key themes include the challenges in accurately modeling lignin's complex structure, the development of efficient screening methodologies for ionic liquids to enhance lignin dissolution and valorization processes, and the integration of machine learning with quantum calculations. These computational advances will drive progress in IL-based lignin valorization by providing deeper molecular-level insights and facilitating the rapid screening of novel IL-lignin systems.
Collapse
Affiliation(s)
- Brian R. Taylor
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Biosecurity and Bioassurance, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Nikhil Kumar
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Biosecurity and Bioassurance, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Dhirendra Kumar Mishra
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Kenneth L. Sale
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Biosecurity and Bioassurance, Sandia National Laboratories, Livermore, CA 94551, USA
| |
Collapse
|
2
|
Pansuriya R, Patel T, Singh K, Al Ghamdi A, Kasoju N, Kumar A, Kailasa SK, Malek NI. Self-healable, stimuli-responsive bio-ionic liquid and sodium alginate conjugated hydrogel with tunable Injectability and mechanical properties for the treatment of breast cancer. Int J Biol Macromol 2024; 277:134112. [PMID: 39048011 DOI: 10.1016/j.ijbiomac.2024.134112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Designing stimuli-responsive drug delivery vehicles with higher drug loading capacity, sustained and targeted release of anti-cancer drugs and able to mitigate the shortcomings of traditional systems is need of hour. Herein, we designed stimuli-responsive, self-healable, and adhesive hydrogel through synergetic interaction between [Cho][Gly] (Choline-Glycine) and sodium alginate (SA). The hydrogel was formed as a result of non-covalent interaction between the components of the mixture forming the fibre kind morphology; confirmed through FTIR/computational analysis and SEM/AFM images. The hydrogel exhibited excellent mechanical strength, self-healing ability, adhesive character and most importantly; adjustable injectability. In vitro biocompatibility of the hydrogel was tested on HaCaT and MCF-7 cells, showing >92 % cell viability after 48 h. The hemolysis ratio (<4 %) of the hydrogel confirmed the blood compatibility of the hydrogel. When tested for drug-loading capacity, the hydrogel show 1500 times drug loading for the 5-fluorouracil (5-FU) against the SA based hydrogel. In vitro release data indicated that 5-FU have more preference towards the cancerous cell condition, i.e. acidic pH (>85 %), whereas the drug-loaded hydrogel successfully killed the MCF-7 and HeLa cell with a
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Tapas Patel
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Kuldeep Singh
- Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, India
| | - Azza Al Ghamdi
- Department of Chemistry, College of Science, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; Basic & Applied Scientific Research Center (BASRC), Water Treatment Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Naresh Kasoju
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Arvind Kumar
- Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, India
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
3
|
Yeboah J, Metott ZJ, Butch CM, Hillesheim PC, Mirjafari A. Are nature's strategies the solutions to the rational design of low-melting, lipophilic ionic liquids? Chem Commun (Camb) 2024; 60:3891-3909. [PMID: 38420843 PMCID: PMC10994746 DOI: 10.1039/d3cc06066g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionic liquids (ILs) have emerged as a new class of materials, displaying a unique capability to self-assemble into micelles, liposomes, liquid crystals, and microemulsions. Despite evident interest, advancements in the controlled formation of amphiphilic ILs remain in the early stages. Taking inspiration from nature, we introduced the concept of lipid-like (or lipid-inspired) ILs more than a decade ago, aiming to create very low-melting, highly lipophilic ILs that are potentially bio-innocuous - a combination of attributes that is frequently antithetical but highly desirable from several application-specific standpoints. Lipid-like ILs are a subclass of functional organic liquid salts that include a range of lipidic side chains such as saturated, unsaturated, linear, branched, and thioether while retaining melting points below room temperature. It was observed in several homologous series of [Cnmim] ILs that elongation of N-appended alkyl chains to greater than seven carbons leads to a substantial increase in melting point (Tm) - which is the most characteristic feature of ILs. Accordingly, it is challenging to develop ILs with low Tm values while preserving their hydrophobicity and self-organizing properties. We found that two alternative Tm depressive approaches are useful. One of these is the replacement of the double bonds with thioether moieties in the alkyl chains, as detailed in several published papers detailing the chemistry of these ILs. Employing thiol-ene and thiol-yne click reactions is a facile, robust, and orthogonal method to overcome the challenges associated with the synthesis of alkyl thioether-functionalized ILs. The second approach involves replacing the double bonds with the cisoid cyclopropyl motif, mimicking the strategy used by certain organisms to modulate cell membrane fluidity. This discovery has the potential to greatly impact the utilization of lipid-like ILs in various applications, including gene delivery, lubricants, heat transfer fluids, and haloalkane separations, among others. This feature article presents a concise, historical overview, highlighting key findings from our work while offering speculation about the future trajectory of this de novo class of soft organic-ion materials.
Collapse
Affiliation(s)
- John Yeboah
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Zachary J Metott
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Christopher M Butch
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA.
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| |
Collapse
|
4
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Pernak J, Łożyński M, Kaczmarek DK, Qu F, Bolla G, Rogers RD. Bioinspired Herbicides-Ionic Liquids or Liquid Cocrystals? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1454-1461. [PMID: 38207097 DOI: 10.1021/acs.jafc.3c06973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This research provides information about combinations of several amino acids, including l-proline (Pro), l-arginine (Arg), and l-histidine (His), with phenoxyacetic acid herbicides (MCPA and 2,4-D). Five amino acid ionic liquids (AAILs), one amino acid higher-melting salt (AAHMS), and two amino acid liquid cocrystals (AALCs) were obtained in high yields (>90%). The ionization of the six new structures was confirmed by NMR, IR, and molecular modeling. X-ray crystallography was used to definitively confirm the binding location of the mobile hydrogen. Furthermore, we propose a computational method for estimating the energy of specific hydrogen bond(s) in AAIL crystals based on the NBO and QTAIM hydrogen bond parameters obtained by model calculations. An in-depth analysis of the structures allowed to answer the question posed in the title, ionic liquids or liquid cocrystals? AAILs based on arginine and histidine were obtained. In contrast, combining proline with MCPA and 2,4-D led to AALCs. Finally, the compounds were analyzed to measure their herbicidal activity. These studies proved that the novel form of MCPA or 2,4-D improved its ability to control weeds compared to commercial formulations containing the same active ingredients.
Collapse
Affiliation(s)
- Juliusz Pernak
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Marek Łożyński
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Damian K Kaczmarek
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Fengrui Qu
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Robin D Rogers
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
6
|
Russo S, Bodo E. A polarisable force field for bio-compatible ionic liquids based on amino acids anions. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Stefano Russo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
7
|
Hao XL, Cao B, Dai D, Wu FG, Yu ZW. Cholesterol Protects the Liquid-Ordered Phase of Raft Model Membranes from the Destructive Effect of Ionic Liquids. J Phys Chem Lett 2022; 13:7386-7391. [PMID: 35925657 DOI: 10.1021/acs.jpclett.2c01873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs), although being a class of promising green solvents, have received many reports on the toxicity to living organisms. In this work, aiming at elucidating the disruptive effect of ILs to cell membrane lipid rafts, we investigated the effect of three 1-octylimidazolium-based ILs on the properties of the liquid ordered phase (Lo, a commonly used lipid raft model) of egg sphingomyelin (SM)-cholesterol model membrane. We found that, in the absence of cholesterol, a very low IL:SM molar ratio of 0.01:1 could disrupt the integrity of the bilayer structure. In sharp contrast, the presence of cholesterol in lipid bilayers helps the Lo phase resist the damaging effect of the ILs. For the role of the IL headgroup, we found that the mono- and trisubstituted species show a stronger destructive effect on the structures of the model rafts than the commonly used disubstituted counterpart.
Collapse
Affiliation(s)
- Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Dong Dai
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Piacentini V, Le Donne A, Russo S, Bodo E. A Computational Analysis of the Reaction of SO2 with Amino Acid Anions: Implications for Its Chemisorption in Biobased Ionic Liquids. Molecules 2022; 27:molecules27113604. [PMID: 35684537 PMCID: PMC9182334 DOI: 10.3390/molecules27113604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
We report a series of calculations to elucidate one possible mechanism of SO2 chemisorption in amino acid-based ionic liquids. Such systems have been successfully exploited as CO2 absorbents and, since SO2 is also a by-product of fossil fuels’ combustion, their ability in capturing SO2 has been assessed by recent experiments. This work is exclusively focused on evaluating the efficiency of the chemical trapping of SO2 by analyzing its reaction with the amino group of the amino acid. We have found that, overall, SO2 is less reactive than CO2, and that the specific amino acid side chain (either acid or basic) does not play a relevant role. We noticed that bimolecular absorption processes are quite unlikely to take place, a notable difference with CO2. The barriers along the reaction paths are found to be non-negligible, around 7–11 kcal/mol, and the thermodynamic of the reaction appears, from our models, unfavorable.
Collapse
Affiliation(s)
- Vanessa Piacentini
- Chemistry Department, University of Rome “La Sapienza”, 00185 Rome, Italy; (V.P.); (S.R.)
| | - Andrea Le Donne
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Russo
- Chemistry Department, University of Rome “La Sapienza”, 00185 Rome, Italy; (V.P.); (S.R.)
| | - Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, 00185 Rome, Italy; (V.P.); (S.R.)
- Correspondence:
| |
Collapse
|
9
|
Khorrami F, Kowsari MH. Tracing the origin of heterogeneities in the local structure and very sluggish dynamics of [Cho][Gly] ionic liquid confined between rutile and graphite slit nanopores: A MD study. J Chem Phys 2022; 156:214701. [DOI: 10.1063/5.0092381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MD simulations are used to study the biocompatible IL [Cho][Gly], confined between two parallel plates of rutile or graphite. Both the structure and dynamical behavior of the confined IL are very heterogeneous and depend effectively on the position of the ions to the pore walls. The ion z-density profile is used for segmentation of the inter-wall space into a central region and two outer layers. The behavior of ions in the central region is very similar to the bulk IL, while the behavior of the arranged ionic layers adjacent to the pore walls show the clear deviation from the bulk IL due to confinement. In general, the confined IL shows a "solid-like" dynamics at T = 353 K, especially in the outer layers near the walls as well as in the z-direction. The presence of the "IL-rutile wall" electrostatic interaction and hydrogen bonding (H-bonding) causes a significant difference in the local structure and dynamics of the IL adjacent to the rutile walls versus the graphite walls. Simulation reveals a significant decrease in the average number of key cation-anion H-bonds at the outer layers relative to the central regions of both confined systems. Recognized [Cho]+···[Gly]-···[Cho]+ bridge structure at the central region is lost in the vicinity of the rutile walls due to inaccessibility of the hydroxyl hydrogen atom, which forms a stable H-bond with the rutile oxygen site. However, another unprecedented [Gly]- bridge is confirmed and preserved near the graphite walls and cations prefer to stay parallel to the wall surface.
Collapse
Affiliation(s)
- Farzad Khorrami
- Institute for Advanced Studies in Basic Sciences, Iran, Islamic Republic of
| | - Mohammad Hossein Kowsari
- Department of Chemistry and and Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences, Iran, Islamic Republic of
| |
Collapse
|