1
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
2
|
Alam P, Clovis NS, Chand AK, Khan MF, Sen S. Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy. Methods Appl Fluoresc 2024; 12:045002. [PMID: 39013401 DOI: 10.1088/2050-6120/ad63f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.
Collapse
Affiliation(s)
- Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Singh A, Gupta M, Rastogi H, Khare K, Chowdhury PK. Deeper Insights into Mixed Crowding through Enzyme Activity, Dynamics, and Crowder Diffusion. J Phys Chem B 2024; 128:5293-5309. [PMID: 38808573 DOI: 10.1021/acs.jpcb.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Majumdar S, Rastogi H, Chowdhury PK. Bridging Soft Interaction and Excluded Volume in Crowded Milieu through Subtle Protein Dynamics. J Phys Chem B 2024; 128:716-730. [PMID: 38226816 DOI: 10.1021/acs.jpcb.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The impact of macromolecular crowding on biological macromolecules has been elucidated through the excluded volume phenomenon and soft interactions. However, it has often been difficult to provide a clear demarcation between the two regions. Here, using temperature-dependent dynamics (local and global) of the multidomain protein human serum albumin (HSA) in the presence of commonly used synthetic crowders (Dextran 40, PEG 8, Ficoll 70, and Dextran 70), we have shown the presence of a transition that serves as a bridge between the soft and hard regimes. The bridging region is independent of the crowder identity and displays no apparent correlation with the critical overlap concentration of the polymeric crowding agents. Moreover, the dynamics of domains I and II and the protein gating motion respond differently, thereby bringing to the fore the asymmetry underlying the crowder influence on HSA. In addition, solvent-coupled and decoupled protein motions indicate the heterogeneity of the dynamic landscape in the crowded milieu. We also propose an intriguing correlation between protein stability and dynamics, with increased global stability being accompanied by eased local domain motion.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Khan T, Das N, Negi KS, Bhowmik S, Sen P. Understanding the intricacy of protein in hydrated deep eutectic solvent: Solvation dynamics, conformational fluctuation dynamics, and stability. Int J Biol Macromol 2023; 253:127100. [PMID: 37778586 DOI: 10.1016/j.ijbiomac.2023.127100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deep eutectic solvents (DESs) are potential biocatalytic media due to their easy preparation, fine-tuneability, biocompatibility, and most importantly, due to their ability to keep protein stable and active. However, there are many unanswered questions and gaps in our knowledge about how proteins behave in these alternate media. Herein, we investigated solvation dynamics, conformational fluctuation dynamics, and stability of human serum albumin (HSA) in 0.5 Acetamide/0.3 Urea/0.2 Sorbitol (0.5Ac/0.3Ur/0.2Sor) DES of varying concentrations to understand the intricacy of protein behaviour in DES. Our result revealed a gradual decrease in the side-chain flexibility and thermal stability of HSA beyond 30 % DES. On the other hand, the associated water dynamics around domain-I of HSA decelerate only marginally with increasing DES content, although viscosity rises considerably. We propose that even though macroscopic solvent properties are altered, a protein feels only an aqueous type of environment in the presence of DES. This is probably the first experimental study to delineate the role of the associated water structure of the enzyme for maintaining its stability inside DES. Although considerable effort is necessary to generalize such claims, it might serve as the basis for understanding why proteins remain stable and active in DES.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
6
|
Sadarangani V, Kalia A, Kausar T, Murarka P, Sau AK. Effect of the Macromolecular Crowding Agents on the Structure and Function of Human Arginase-I, a Therapeutically Important Enzyme. J Phys Chem B 2023; 127:8749-8761. [PMID: 37796726 DOI: 10.1021/acs.jpcb.3c02940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Macromolecular crowding has been known to influence the structure and function of many enzymes through excluded volume effects and/or soft interactions. Here, we employed two synthetic macromolecular crowders, Dextrans and poly(ethylene glycol)s (PEGs) with varying molecular masses, to examine how they affected the structure and function of a therapeutically important enzyme, human arginase-I that catalyzes the conversion of l-arginine to l-ornithine and urea. Except at greater concentrations of Dextran 200, Dextrans were observed to slightly reduce the enzymatic activity, indicating that they exert their influence mainly through the excluded volume effects. Similar outcomes were seen with PEGs, with the exception of PEG 1000, where the activity decreased with increasing PEG concentrations, showing the maximum effect at a 20 g/L concentration. This finding suggests that the enzyme function is reduced by the soft interactions of this macromolecule with the enzyme, supported by the binding measurement. Secondary and local tertiary structures and thermodynamic stability were also affected, suggesting that PEG 1000 has an impact on the protein's structure. Furthermore, molecular dynamics simulation studies suggest that the catalytic pocket is disturbed, presumably by the unwinding of neighboring helix 9. As a result, the positioning of nearby Glu277 is altered, which prevents His141 and Glu277 from making contact. This hampers the proton transfer from the catalytic His141 to the intermediate species to form ornithine, a crucial step for the substrate hydrolysis reaction by this arginase. Overall, the knowledge gained from this study might be helpful for understanding how different enzymes work in a crowded/cellular environment.
Collapse
Affiliation(s)
- Vineet Sadarangani
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anjali Kalia
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tasneem Kausar
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Murarka
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Apurba Kumar Sau
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
7
|
Sardana D, Alam P, Yadav K, Clovis NS, Kumar P, Sen S. Unusual similarity of DNA solvation dynamics in high-salinity crowding with divalent cations of varying concentrations. Phys Chem Chem Phys 2023; 25:27744-27755. [PMID: 37814577 DOI: 10.1039/d3cp02606j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pramod Kumar
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Simisi Clovis N, Alam P, Kumar Chand A, Sardana D, Firoz Khan M, Sen S. Molecular Crowders Modulate Ligand Binding Affinity to G-Quadruplex DNA by Decelerating Ligand Association. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|