1
|
Mantha S, Glisman A, Yu D, Wasserman EP, Backer S, Wang ZG. Adsorption Isotherm and Mechanism of Ca 2+ Binding to Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6212-6219. [PMID: 38497336 PMCID: PMC10976897 DOI: 10.1021/acs.langmuir.3c03640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adsorption isotherm of Ca2+ binding to sodium polyacrylate (NaPAA) and investigated the associated binding mechanism. We find that the number of calcium ions adsorbed [Ca2+]ads to the polymer saturates at moderately high concentrations of free calcium ions [Ca2+]aq in the solution. This saturation value is intricately connected with the binding modes accessible to Ca2+ ions when they bind to the polyelectrolyte chain. We identify two dominant binding modes: the first involves binding to at most two carboxylate oxygens on a polyacrylate chain, and the second, termed the high binding mode, involves binding to four or more carboxylate oxygens. As the concentration of free calcium ions [Ca2+]aq increases from low to moderate levels, the polyelectrolyte chain undergoes a conformational transition from an extended coil to a hairpin-like structure, enhancing the accessibility to the high binding mode. At moderate concentrations of [Ca2+]aq, the high binding mode accounts for at least one-third of all binding events. The chain's conformational change and its consequent access to the high binding mode are found to increase the overall Ca2+ ion binding capacity of the polyelectrolyte chain.
Collapse
Affiliation(s)
- Sriteja Mantha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alec Glisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Decai Yu
- Core
R&D, The Dow Chemical Company, 633 Washington St., Midland, Michigan 48674, United States
| | - Eric P. Wasserman
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Scott Backer
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Zhen-Gang Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Clark JA, Prabhu VM, Douglas JF. Molecular Dynamics Simulation of the Influence of Temperature and Salt on the Dynamic Hydration Layer in a Model Polyzwitterionic Polymer PAEDAPS. J Phys Chem B 2023; 127:8185-8198. [PMID: 37668318 PMCID: PMC10578162 DOI: 10.1021/acs.jpcb.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter () for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å. The water mobility in this layer is defined through the mean-square water molecule displacement at a time on the order of water's β-relaxation time. The brushlike topology of polybetaines leads to two regions in the dynamic hydration layer. The inner region of ≈10.5 Å is explored by pendant group conformational motions, and the outer region of ≈7.5 Å represents an extended layer of reduced water mobility relative to bulk water. The dynamic hydration layer extends far beyond the static hydration layer, adjacent to the polymer.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Habibi P, Rahbari A, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. A New Force Field for OH - for Computing Thermodynamic and Transport Properties of H 2 and O 2 in Aqueous NaOH and KOH Solutions. J Phys Chem B 2022; 126:9376-9387. [PMID: 36325986 PMCID: PMC9677430 DOI: 10.1021/acs.jpcb.2c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e., self-diffusivities and dynamic viscosities), and solubilities of H2 and O2 in aqueous sodium and potassium hydroxide (NaOH and KOH) solutions for a wide electrolyte concentration range (0-8 mol/kg). Simulations are carried out for a temperature and pressure range of 298-353 K and 1-100 bar, respectively. The TIP4P/2005 water model is used in combination with a newly parametrized OH- force field for NaOH and KOH. The computed dynamic viscosities at 298 K for NaOH and KOH solutions are within 5% from the reported experimental data up to an electrolyte concentration of 6 mol/kg. For most of the thermodynamic conditions (especially at high concentrations, pressures, and temperatures) experimental data are largely lacking. We present an extensive collection of new data and engineering equations for H2 and O2 self-diffusivities and solubilities in NaOH and KOH solutions, which can be used for process design and optimization of efficient alkaline electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Samuel Blazquez
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Carlos Vega
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| |
Collapse
|