1
|
Lev B, Vorobyov I, Clarke RJ, Allen TW. The Membrane Dipole Potential and the Roles of Interfacial Water and Lipid Hydrocarbon Chains. J Phys Chem B 2024; 128:9482-9499. [PMID: 39303305 DOI: 10.1021/acs.jpcb.4c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Understanding membrane charge transport processes, including the actions of ion channels, pumps, carriers, and membrane-active peptides, requires a description of the electrostatics of the lipid bilayer. We have simulated a library of different lipid chemistries to reveal the impact of the headgroup, glycerol backbone, and hydrocarbon chains on the membrane dipole potential. We found a strong dependence of the potential on lipid packing, but this was not caused by the packing of lipid polar components, due to cancellation of their electric fields by electrolyte. In contrast, lipid tail contributions were determined by area per lipid, arising from two countering effects. Increased area per lipid leads to chain tilting that increases methylene dipole projections to strengthen the electric field within the bilayer, while at the same time decreasing the electric field from terminal methyl groups. Moreover, electric fields from some nonterminal groups and the terminal methyl group can extend beyond the bilayer center and be canceled by the opposing leaflet. This interleaflet field annulment explains the experimental reduction in dipole potential for unsaturated and branched lipid bilayers, by as much as ∼200 mV, as well as experiments that substitute chain carbons with sulfur. Replacing ester with ether groups (eliminating two carbonyl groups) causes a significant reduction in potential, also by ∼200 mV, in agreement with experiment. We show that the effect can be largely attributed to the loss of aligned water molecules in the glycerol backbone region, lowering the potential inside the bilayer core. When only one of the two carbonyls is removed (using a hybrid ester-ether lipid or a single-chain lipid), most of this reduction in potential was lost, with the single carbonyl group able to maintain full hydration in the interfacial region. While headgroup chemistry can have a major effect (by as much as ±100 mV relative to phosphatidylcholine), anionic headgroups either decrease or increase the dipole potential, with the variation involving perturbation in hydrogen-bonded water molecules and changes in packing of lipid tails. Overall, these results suggest that membrane electrostatics are dominated by aligned water molecules at the polar-hydrocarbon interface and, surprisingly, by the charge distribution of the nonpolar lipid tails, and not the packing of headgroup and glycerol carbonyl dipoles.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology/Department of Pharmacology, University of California, Davis, 4303 Tupper Hall, One Shields Avenue, Davis, California 95616, United States
| | - Ronald J Clarke
- School of Chemistry, University of Sydney/University of Sydney Nano Institute, City Road, Sydney, NSW 2006, Australia
| | - Toby W Allen
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
2
|
Allahyarov E, Löwen H. Electric field-induced clustering in nanocomposite films of highly polarizable inclusions. J Colloid Interface Sci 2024; 668:587-598. [PMID: 38691967 DOI: 10.1016/j.jcis.2024.04.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
A nanocomposite film containing highly polarizable inclusions in a fluid background is explored when an external electric field is applied perpendicular to the planar film. For small electric fields, the induced dipole moments of the inclusions are all polarized in field direction, resulting in a mutual repulsion between the inclusions. Here we show that this becomes qualitatively different for high fields: the total system self-organizes into a state which contains both polarizations, parallel and antiparallel to the external field such that a fraction of the inclusions is counter-polarized to the electric field direction. We attribute this unexpected counter-polarization to the presence of neighboring dipoles which are highly polarized and locally revert the direction of the total electric field. Since dipoles with opposite moments are attractive, the system shows a wealth of novel equilibrium structures for varied inclusion density and electric field strength. These include fluids and solids with homogeneous polarizations as well as equilibrium clusters and demixed states with two different polarization signatures. Based on computer simulations of an linearized polarization model, our results can guide the control of nanocomposites for various applications, including sensing external fields, directing light within plasmonic materials, and controlling the functionality of biological membranes.
Collapse
Affiliation(s)
- Elshad Allahyarov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany; Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN), 13/19 Izhorskaya street, Moscow 125412, Russia; Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7202, United States.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Biswas B, Shah D, Cox-Vázquez SJ, Vázquez RJ. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy. J Mater Chem B 2024; 12:6570-6576. [PMID: 38899544 DOI: 10.1039/d4tb00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.
Collapse
Affiliation(s)
- Bidisha Biswas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Dhari Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
4
|
Orlikowska-Rzeznik H, Versluis J, Bakker HJ, Piatkowski L. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. J Am Chem Soc 2024; 146:13151-13162. [PMID: 38687869 PMCID: PMC11099968 DOI: 10.1021/jacs.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jan Versluis
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Lukasz Piatkowski
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
5
|
Ji X, Wang N, Wang J, Wang T, Huang X, Hao H. Non-destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes. Chem Sci 2024; 15:3800-3830. [PMID: 38487216 PMCID: PMC10935763 DOI: 10.1039/d3sc06527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.
Collapse
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| |
Collapse
|
6
|
Masuda D, Nakanishi I, Ohkubo K, Ito H, Matsumoto KI, Ichikawa H, Chatatikun M, Klangbud WK, Kotepui M, Imai M, Kawakami F, Kubo M, Matsui H, Tangpong J, Ichikawa T, Ozawa T, Yen HC, St Clair DK, Indo HP, Majima HJ. Mitochondria Play Essential Roles in Intracellular Protection against Oxidative Stress-Which Molecules among the ROS Generated in the Mitochondria Can Escape the Mitochondria and Contribute to Signal Activation in Cytosol? Biomolecules 2024; 14:128. [PMID: 38275757 PMCID: PMC10813015 DOI: 10.3390/biom14010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.
Collapse
Affiliation(s)
- Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Tsukuba 305-0047, Ibaraki, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan;
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Kyoto, Japan;
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Division of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Toshihiko Ozawa
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Saitama, Japan;
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Daret K. St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Hiroko P. Indo
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Hideyuki J. Majima
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|