1
|
Coelho FM, Vinogradov J, Derksen JJ, Franco LFM. Electrokinetic properties of NaCl solution via molecular dynamics simulations with scaled-charge electrolytes. J Chem Phys 2024; 161:044508. [PMID: 39072421 DOI: 10.1063/5.0219098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Scaling ionic charges has become an alternative to polarizable force fields for representing indirect charge transfer effects in molecular simulations. In our work, we apply molecular dynamics simulations to investigate the properties of NaCl aqueous solutions in homogeneous and confined media. We compare classical integer- and scaled-charge force fields for the ions. In the bulk, we validate the force fields by computing equilibrium and transport properties and comparing them with experimental data. Integer-charge ions overestimate dielectric saturation and ionic association. Both force fields present an excess in ion-ion correlation, which leads to a deviation in the ionic conductivity at higher ionic strengths. Negatively charged quartz is used to simulate the confinement effect. Electrostatic interactions dominate counter-ion adsorption. Full-charge ions have stronger and more defined adsorption planes. We obtain the electroosmotic mobility of the solution by combining the shear plane location from non-equilibrium simulations with the ionic distribution from equilibrium simulations. From the Helmholtz-Smoluchowski equation, the zeta potential and the streaming potential coupling coefficient are computed. From an atomic-scale perspective, our molecular dynamics simulations corroborate the hypothesis of maximum packing of the Stern layer, which results in a stable and non-zero zeta potential at high salinity. The scaled-charge model representation of both properties is in excellent qualitative and quantitative agreement with experimental data. With our work, we demonstrate how useful and precise simple scaled-charge models for electrolytes can be to represent complex systems, such as the electrical double layer.
Collapse
Affiliation(s)
- Felipe M Coelho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química, Campinas-SP 13083-852, Brazil
| | - Jan Vinogradov
- Department of Mechanical Engineering and Mechatronics, Ariel University, 40700 Ariel, Israel
| | - Jos J Derksen
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Luís F M Franco
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química, Campinas-SP 13083-852, Brazil
| |
Collapse
|
2
|
Hack JH, Lewis NHC, Knight S, Carpenter WB, De Marco L, Ramasesha K, Tokmakoff A. Generation and Implementation of Continuum Infrared Pulses for Broadband Detection in 2D IR Spectroscopy. J Phys Chem A 2024; 128:4901-4910. [PMID: 38836554 DOI: 10.1021/acs.jpca.4c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent years, new methods of generating continuum mid-infrared pulses through filamentation in gases have been developed for ultrafast time-resolved infrared vibrational spectroscopy. The generated infrared pulses can have thousands of wavenumbers of bandwidth, spanning the entire mid-IR region while retaining pulse length below 100 fs. This technology has had a significant impact on problems involving ultrafast structural dynamics in congested spectra with broad features, such as those found in aqueous solutions and molecules with strong intermolecular interactions. This study describes the recent advances in generating and characterizing these pulses and the practical aspects of implementing these sources for broadband detection in transient absorption and 2D IR spectroscopy.
Collapse
Affiliation(s)
- John H Hack
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samuel Knight
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - William B Carpenter
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Felsted RG, Graham TR, Zhao Y, Bazak JD, Nienhuis ET, Pauzauskie PJ, Joly AG, Pearce CI, Wang Z, Rosso KM. Anionic Effects on Concentrated Aqueous Lithium Ion Dynamics. J Phys Chem Lett 2024:5076-5087. [PMID: 38708887 DOI: 10.1021/acs.jpclett.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.
Collapse
Affiliation(s)
- Robert G Felsted
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Trent R Graham
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yatong Zhao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - J David Bazak
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emily T Nienhuis
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Peter J Pauzauskie
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Alan G Joly
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Zheming Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
4
|
Ma L, Jiang J. Vehicular Motions Dominate the Ion Transport in Concentrated LiTFSI Aqueous Solutions? J Phys Chem Lett 2024; 15:4531-4537. [PMID: 38635898 DOI: 10.1021/acs.jpclett.4c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Water-in-salt electrolytes (WiSEs) show great promise for applications in grid-scale energy storage. The design of high-performance WiSEs requires a comprehensive understanding of their microstructures and ion transport properties. In the present work, based on the CL&Pol force field, we have developed a polarizable force field (PFF) tailored for high-concentration LiTFSI aqueous solutions, which accurately reproduces the structural and dynamical properties. Unlike the literature, we do not observe the presence of bulk-like water in LiTFSI solutions exceeding 19 mol/kg. Furthermore, we find that the vast majority of Li(H20)n+ are short-lived, and thus, the structural motion rather than the vehicular motion is the main mode of ion transport. Our results have significant implications for understanding the ion dynamics in WiSEs. Additionally, further in-depth experimental analyses are imperative.
Collapse
Affiliation(s)
- Linbo Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Shah NJ, Fang C, Osti NC, Mamontov E, Yu X, Lee J, Watanabe H, Wang R, Balsara NP. Nanosecond solvation dynamics in a polymer electrolyte for lithium batteries. NATURE MATERIALS 2024; 23:664-669. [PMID: 38413811 DOI: 10.1038/s41563-024-01834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Solvation dynamics critically affect charge transport. Spectroscopic experiments and computer simulations show that these dynamics in aqueous systems occur on a picosecond timescale. In the case of organic electrolytes, however, conflicting values ranging from 1 to several 100 picoseconds have been reported. We resolve this conflict by studying mixtures of an organic polymer and a lithium salt. Lithium ions coordinate with multiple polymer chains, resulting in temporary crosslinks. Relaxation of these crosslinks, detected by quasielastic neutron scattering, are directly related to solvation dynamics. Simulations reveal a broad spectrum of relaxation times. The average timescale for solvation dynamics in both experiment and simulation is one nanosecond. We present the direct measurement of ultraslow dynamics of solvation shell break-up in an electrolyte.
Collapse
Affiliation(s)
- Neel J Shah
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chao Fang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaopeng Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jaeyong Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Nitash P Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Wróbel P, Kubisiak P, Eilmes A. Ab Initio Molecular Dynamics Simulations of Aqueous LiTFSI Solutions─Structure, Hydrogen Bonding, and IR Spectra. J Phys Chem B 2024; 128:1001-1011. [PMID: 38235720 PMCID: PMC10839825 DOI: 10.1021/acs.jpcb.3c06633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Simulations of Density Functional Theory-based ab initio molecular dynamics (AIMD) have been performed for a series of aqueous lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) solutions with concentrations ranging from salt-in-water to water-in-salt systems. Analysis of the structure of electrolytes has revealed a preference of Li+ cations to interact with water molecules. In concentrated LiTFSI solutions, water molecules form small associates. The total number of hydrogen bonds (HBs) in the system decreases with salt concentrations, with bonds to water acceptors being only partially replaced by interactions with TFSI anions. Infrared (IR) spectra in the region of the O-H stretching frequency calculated from AIMD trajectories are in good agreement with experimental data. Statistics of oscillations of individual O-H bonds have shown correlations between vibrational frequencies and the structure of HBs formed by water. The changes in the IR spectrum have been related to the varying contributions of different local environments of the water molecules. The abundances of the three spectral components calculated from the simulations agree well with the decomposition of the experimental IR spectra reported in the literature.
Collapse
Affiliation(s)
- Piotr Wróbel
- Faculty of Chemistry, Jagiellonian
University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Kubisiak
- Faculty of Chemistry, Jagiellonian
University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Eilmes
- Faculty of Chemistry, Jagiellonian
University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Kacenauskaite L, Van Wyck SJ, Moncada Cohen M, Fayer MD. Water-in-Salt: Fast Dynamics, Structure, Thermodynamics, and Bulk Properties. J Phys Chem B 2024; 128:291-302. [PMID: 38118403 DOI: 10.1021/acs.jpcb.3c07711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Paillot M, Wong A, Denisov SA, Soudan P, Poizot P, Montigny B, Mostafavi M, Gauthier M, Le Caër S. Predicting Degradation Mechanisms in Lithium Bistriflimide "Water-In-Salt" Electrolytes For Aqueous Batteries. CHEMSUSCHEM 2023:e202300692. [PMID: 37385952 DOI: 10.1002/cssc.202300692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Aqueous solutions are crucial to most domains in biology and chemistry, including in energy fields such as catalysis and batteries. Water-in-salt electrolytes (WISEs), which extend the stability of aqueous electrolytes in rechargeable batteries, are one example. While the hype for WISEs is huge, commercial WISE-based rechargeable batteries are still far from reality, and there remain several fundamental knowledge gaps such as those related to their long-term reactivity and stability. Here, we propose a comprehensive approach to accelerating the study of WISE reactivity by using radiolysis to exacerbate the degradation mechanisms of concentrated LiTFSI-based aqueous solutions. We find that the nature of the degradation species depends strongly on the molality of the electrolye, with degradation routes driven by the water or the anion at low or high molalities, respectively. The main aging products are consistent with those observed by electrochemical cycling, yet radiolysis also reveals minor degradation species, providing a unique glimpse of the long-term (un)stability of these electrolytes.
Collapse
Affiliation(s)
- Malaurie Paillot
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191, Gif sur Yvette Cedex, France
| | - Alan Wong
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191, Gif sur Yvette Cedex, France
| | - Sergey A Denisov
- Institut de Chimie Physique UMR8000, CNRS, Université Paris Saclay, Bâtiment 349, 91405, Orsay, France
| | - Patrick Soudan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| | - Philippe Poizot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| | - Benedicte Montigny
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (EA 6299), Université de Tours, Parc de Grandmont, 37200, France
| | - Mehran Mostafavi
- Institut de Chimie Physique UMR8000, CNRS, Université Paris Saclay, Bâtiment 349, 91405, Orsay, France
| | - Magali Gauthier
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191, Gif sur Yvette Cedex, France
| | - Sophie Le Caër
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191, Gif sur Yvette Cedex, France
| |
Collapse
|
9
|
Matsuura Y. First principles study of coherent electron/spin transport across metallothionein: A cadmium-binding protein. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Takahashi H, Tanimura Y. Discretized hierarchical equations of motion in mixed Liouville-Wigner space for two-dimensional vibrational spectroscopies of liquid water. J Chem Phys 2023; 158:044115. [PMID: 36725520 DOI: 10.1063/5.0135725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A model of a bulk water system describing the vibrational motion of intramolecular and intermolecular modes is constructed, enabling analysis of its linear and nonlinear vibrational spectra as well as the energy transfer processes between the vibrational modes. The model is described as a system of four interacting anharmonic oscillators nonlinearly coupled to their respective heat baths. To perform a rigorous numerical investigation of the non-Markovian and nonperturbative quantum dissipative dynamics of the model, we derive discretized hierarchical equations of motion in mixed Liouville-Wigner space, with Lagrange-Hermite mesh discretization being employed in the Liouville space of the intramolecular modes and Lagrange-Hermite mesh discretization and Hermite discretization in the Wigner space of the intermolecular modes. One-dimensional infrared and Raman spectra and two-dimensional terahertz-infrared-visible and infrared-infrared-Raman spectra are computed as demonstrations of the quantum dissipative description provided by our model.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Lewis NHC, Dereka B, Zhang Y, Maginn EJ, Tokmakoff A. From Networked to Isolated: Observing Water Hydrogen Bonds in Concentrated Electrolytes with Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:5305-5319. [PMID: 35829623 DOI: 10.1021/acs.jpcb.2c03341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superconcentrated electrolytes have emerged as a promising class of materials for energy storage devices, with evidence that high voltage performance is possible even with water as the solvent. Here, we study the changes in the water hydrogen bonding network induced by the dissolution of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in concentrations ranging from the dilute to the superconcentrated regimes. Using time-resolved two-dimensional infrared spectroscopy, we observe the progressive disruption of the water-water hydrogen bond network and the appearance of isolated water molecules interacting only with ions, which can be identified and spectroscopically isolated through the intermolecular cross-peaks between the water and the TFSI- ions. Analyzing the vibrational relaxation of excitations of the H2O stretching mode, we observe a transition in the dominant relaxation path as the bulk-like water vanishes and is replaced by ion-solvation water with the rapid single-step relaxation of delocalized stretching vibrations into the low frequency modes being replaced by multistep relaxation through the intramolecular H2O bend and into the TFSI- high frequency modes prior to relaxing to the low frequency structural degrees of freedom. These results definitively demonstrate the absence of vibrationally bulk-like water in the presence of high concentrations of LiTFSI and especially in the superconcentrated regime, while additionally revealing aspects of the water hydrogen bond network that have been difficult to discern from the vibrational spectroscopy of the neat liquid.
Collapse
Affiliation(s)
- Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Bogdan Dereka
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yong Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|